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Heat transfer is very important in many industrial and geophysical problems. Be-
cause these problems often have complicated fluid dynamics, there are advantages
in solving them using Lagrangian methods like smoothed particle hydrodynamics
(SPH). Since SPH particles become disordered, the second derivative terms may
be estimated poorly, especially when materials with different properties are adja-
cent. In this paper we show how a simple alteration to the standard SPH formu-
lation ensures continuity of heat flux across discontinuities in material properties.
A set of rules is formulated for the construction of isothermal boundaries leading
to accurate conduction solutions. A method for accurate prediction of heat fluxes
through isothermal boundaries is also given. The accuracy of the SPH conduction
solutions is demonstrated through a sequence of test problems of increasing com-
plexity. © 1999 Academic Press

1. INTRODUCTION

Many of the problems of geophysical and industrial fluid dynamics involve comple
flows. A typical example is a process involving more than one material and more than
phase with interfaces which may lead to wave breaking and splash. Thermal and chen
processes present further complications.

The simulation of such systems can sometimes present difficulties for finite differer
and finite element methods, particularly when coupled with complex free surface moti
For example, the relatively simple problem of a wave overturning and breaking on a f
surface can only be followed with these methods until the overturning wave touches
fluid [10]. By comparison, smoothed particle hydrodynamics (SPH) (for a review see [1
can easily follow wave breaking. Furthermore it provides a reasonable simulation of spl
on a length scale exceeding that where surface tension must be included [13].
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228 CLEARY AND MONAGHAN

The flexibility of SPH arises because a grid is not needed except as a bookkeeping de
Derivatives are calculated by exactly differentiating an interpolation formula. However, t
greater the disorder of the particles, the less accurate the derivatives, and second and
derivatives must be treated with particular care. For example, a successful SPH algor
for simulating the dynamics of fluids, including liquid metals, in which thermal conductic
is important, requires a robust method of calculating second derivatives. Brookshaw
proposed one such method and his numerical experiments confirmed that it worked
for problems with constant or slowly varying thermal conductivity. However, in man
industrial problems the thermal conductivity can change rapidly, or even discontinuou
because different materials (for example, air and metal) are in contact. The form of the |
conduction equation given by Brookshaw does not work well in these cases because it
not ensure continuity of the heat flux.

In this paper we describe an SPH algorithm for heat conduction which works well ev
when the thermal conductivity changes discontinuously or is a sensitive function of 1
temperature. Conductivity ratios of up to 1000:1 between adjacent materials were te
successfully. We also show how to construct boundary conditions so that the flux of f
across the boundary is accurate. To confirm that our method is not sensitive to the par
configuration we also apply the algorithm to configurations where the boundaries are stre
but not aligned with the particles, where the boundaries are curved and where the par
positions are those that occur in a dynamical simulation. In all cases the algorithm prodt
very accurate results.

This SPH algorithm for accurately treating heat conduction was developed so that
method could be applied to complex industrial free surface flow problems involving he
transfer, such as multi-material flows in electric arc furnaces and high-pressure die cas
of metal automotive components. Even though the ultimate aim of this work is to apply |
heat transfer method to nonisothermal free surface flows, it is necessary that it be ab
accurately predict conduction in solids with strongly varying and discontinuous matelt
properties in configurations of geometric complexity. If one were principally interested
solving heat conduction in solids then more conventional fixed grid or mesh methods wa
be more suitable.

For coupled heat and fluid flows where there are large deformations in the material bot
aries, the SPH method offers significant advantages over conventional methods. Der
strating the accuracy of these solutions is well beyond the scope of the present paper (f
because of the difficulty in obtaining either numerical or experimental results with whi
to compare them and partly because simulation of pure conduction is already a signifit
advance). SPH has been shown to also give results which agree well with high-accu
finite element solutions for natural convection in a cavity at low and medium Raylei
numbers [5], suggesting that the jump to the more complex flows is unlikely to be diffici
for this method.

2. THE SPH METHOD

A review of SPH is given in [11]. This describes briefly the connection to earlier partic
methods and the overall methodology. Here we are interested in the construction of ¢
equations that correspond to the thermal energy equation. For SPH calculations we as:
the medium and the boundary are represented by a set of particles. Renédenasa,,
densityp,, thermal conductivitk,, temperaturd@,, energy per unit mass,, and positiomn ,.
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The interpolated value of a functiok at positionr is given by
Ap
A(r) = ZmbEW(r — b, h), (1)
b

whereW is a spline based interpolation kernel of radibsahd the summation occurs over
all particlesb within the radius of the kernel centered on positidisee [11] for details).

The gradient of the functio’ can be obtained by analytically differentiating the inter-
polation formula (1). Thus,

VA®r) = Z mb%VW(r —T'p, h). 2)
b

Since the kernels are similar in form and symmetry to a Gaussian we can always write
VWap = rapFab, (3)

wherer ap = rq — rp andFyp is a scalar functior<O.
As an example of (1) the density can be evaluated by

Pa = Z MpWap, (4)
b

whereW,, =W(r, — rp, h), though in practice it is often an advantage to calculate th
density from the continuity equation which, in SPH form, can be written

dpa
E = zb: MpVap - vaVVabv (5)
wherev,, =V, — Vp. This notation is used for vectors throughout this papgrdenotes
that gradient derivatives are taken with respect to the coordinates of patrticle

In all the simulations presented in this paper we use a cubic kernel constructed from
B-splines requiring that both the kernel and its derivative be continuous. The kernel is

%—q2+%q3, 0<g<l1
15
W@.h =4 52-° 1<q<2, (6)
0, otherwise

whereq = r 4/ h. Thisis arelatively low-order kernel with around 18 neighbouring particle
contributing to the interpolated quantities at each particle location. For many fluid dynar
applications quartic kernels are used with an average of around 28 neighbouring parti
contributing. These higher order kernels demonstrate higher accuracy and stability.
results presented here for heat conduction using the lower order cubic kernel are there
really worst case results which can be improved further by using higher order kernels.
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2.1. The General Energy Equation

A very general energy equation for fluid flows (eq. 10.1-13 from [1]) is

DU
pD—t:—V~q—P(V-v)—(r:Vv), @)
whereU is the thermal energy/massis the densityP is the pressureis the velocity, and
7 is the stress. The terms on the RHS of (6) correspond to conduction, reversible inte
energy changes caused by compression, and irreversible losses due to viscous dissip
The conductive heat flux is given by

q=—kVT, 8)

whereT is the temperature arklis the conductivityk may depend oM and on other
material properties. Assuming that the fluid is Newtonian allows the viscous dissipatior
be rewritten asb, (see [1, p. 316]). The energy equation then becomes

p% — V- (KVT) = P(V-V) + pu®,. 9

No other simplifying assumptions having been made in the derivation of this equation.
The energy equation can be rewritten in terms of the temperature,

DT P
yv— =V -(KVT) =T —= | (V-V) + nd,, 10
pe Dt ( ) <8T>V( Vtu (10)

whereV is volume/unit mass and is the dynamic viscosity.
If the fluid is ideal then the flow is adiabatic and reversible. The equation of state for
ideal gas is

oP P
P =pRT implyi — | == 11
pRT,  implying (aT )v < (11)
The energy equation expressed in term3 @ahen becomes

DT
'OC”D_t =V-(kVT) = P(V-V) + n®,. (12)
One can use either the internal energy or the temperature as the principal variable
determining the heat flows. If the connection between internal energy and temperatul
simple, for example,

U=c,T, (13)

then Eg. (12) follows immediately from Eq. (9). If the functional relationship between ir
ternal energy and temperature is more complex, as is the case for liquid metals, ther
internal energy equation (9) is the more appropriate of the two. For more complex therr
dynamic processes, such as those involving phase changes, the ehthalggnerally a
better choice of independent variable with the governing equation being similar to Eq. |
with H replacingU.
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Distributed heat sources and sinks of magnitager unit volume can be added to the
right-hand sides of either (9) or (12).
For conduction in an incompressible solid the energy equation reduces to

pZ—LtJ =V (kVT). (14)

2.2. A Preliminary SPH Conduction Equation and Error Estimates

The simplest way to construct an SPH heat conduction equation would be to start v
an interpolatedl’ and form its gradient by exact differentiation, then multiply lpyand
then differentiate again to form the divergence. However, the resulting expression is
sensitive to particle disorder to be of practical use. A better approach is to explore inte
approximants to the thermal conduction equation. For an ideal gas whekegp we use
the integral approximant

Er') +&(r) / N Ay
/ (r )p(r,)+ (r)[T(r)—T(r )G —r)dr’, (15)
with
_q-VW(q)

wheren =0.01h acts as a clipping constant to prevent singularities when the positions
two particles with different temperatures coincide. Although we have retained this form
G, the spherically symmetric kernel we use allows us to write

VW(q) = qF(Q), (17)

and then we can také = F with no singularities.
On converting (15) to SPH form we find

Sat b () Fa, (18)
Pb

1
;v-(ngT) =zzmb
b

Pa

whereF;p = F(ra — rp). Whenk is constant or a function of the temperature we use th
integral approximant

p(—lr) /[k(r/) +KOTE) = TEHGT —r')dr, (19)

which in SPH form is

1
REGUEDY pm; (Ka + ko) (Ta — To) Fap. (20)

b alb

The SPH form of the heat equation (14) is then

BUa _ Z mb (
ot b Pabb

— Tb) Fap. (21)
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TABLE |
Coefficient of Conduction Term in PDE for Various Values ofh/ Ax
and Different Order Interpolation Kernels

Kernel 1.0 12 15 18 2.0
Cubic 1.0000 1.0224 0.9877 0.9907 1.0000
Quartic 1.0000 0.9967 1.0034 1.0012 1.0000
Gaussian 0.9981 1.0000 1.0000 1.0000 0.9987

This approximation to the heat conduction equation conserves total thermal energy
ensures that the entropy increases.

An estimate of the accuracy of this summation can be made for the case of equisp:s
particles modelling ahomogeneous material in one dimension. After Taylor series expan
of Ty we find

U 92T 94T
kIl a4 22
ot~ Koz TAAX Ga T (22)

For consistency with the original partial differential equation the coeffieiestiould be 1.
The second term on the right is the lowest order error term which is spatially secc
order.

The coefficienix and 8 are given by summations &,,. Table | gives the values of
for a Gaussian, the cubic kernel (6), and a quartic kernel. The summation for the infir
Gaussian kernel is truncated after five terms of the series expansioh/&ksr= 1 both
the cubic and the quartic kernels have- 1 and are consistent with the original PDE. For
h/Ax = 1.2 the value ofx is slightly higher than unity for the cubic kernel and slightly
lower than unity for the quartic one. A& Ax increases — 1 for both these kernels. This
reflects increasing numbers of particles in the summations which approximate the orig
integrals progressively more exactly. Howeverh@ax increases, the computational cost
increases, so there is a trade-off between accuracy/consistency and speed. In this |
we choose the worst combination of the cubic kernel Bndx = 1.2 and show that the
numerical performance of even this case is very good. The other combinations of kernel
smoothing length are expected to perform even better than this. The error in the coeffic
« manifests as a proportional error in the thermal diffusivity. This can complicate efforts
establish the order of the error terms. The coefficgof the error term foh/Ax =12 is
0.123, 0.150, and 0.180 for the cubic, quartic, and Gaussian kernels, respectively.

If the integrals are done exactly (meaning that if there are an infinite number of partic
in the summations in Eq. (21) then ti@Ax?) and higher order error terms vanish in
Eq. (22)) then there are stid(h?) errors because this integral differs from the actual hee
conductionV - (kVT) term by O(h?) errors. So, as we increabg¢ Ax, the summations
approximate the integrals better but the error term associated with the original interpola
increases slowly. The situation with disordered particles is even more complicated. The
tegral interpolant still has the same er@¢h?) but the summation introduces errors which
are probably larger tha® (A x?). If we could use arbitrarily many particles we could reduce
h more slowly than the particle spacing (even if disordered), and the summation would
very close to the integral and the overall error would®g?).
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While it is possible to analytically quantify the errors in terms of particle spacing ar
kernel for very simple configurations described above (homogeneous properties, equisp
particles, no discontinuities), it is not possible to do so for general configurations, especi
when the particles are disordered. We therefore examine the convergence and accure
the SPH conduction algorithm by numerical means later in this paper.

2.3. Discontinuous Thermal Conductivity

To take into account a discontinuous thermal conductivity we consider the simple probl
of heat conduction in one dimensigmwith thermal conductivity, if x < 0 andk; if x > 0.

In order to solve this problem the usual procedure is to solve the heat conduction prob
separately in each region and require that the heat flux be continuous at the interface bet
the regions.

If we use finite differences with points spaced Ay, and denote the temperature at the
interface byT*, the condition that the flux be continuous gives

a-m _ K (T2 =T9

ki AX/2 AX/2

: (23)

where pointj is the last point on the left of the interface and pagint 1 is the first on the
right of the interface. We then find

_ KT+ kT

T*
ke +ki

(24)

To solve the heat conduction equation for the material withO we approximate the
conduction equation at the poipty

% —k, (T*=T;) 3 (T = Tj—) i (25)
at AX/2 (AX) AX
If we now substitute foil * we find
3Uj 2(Tj+1 — Tj)kLkR k|_ (Tj — ijl) 1
= _ — — (26)
ot (k. + kr)AX AX AX

This result shows us that the effect of requiring the flux into the adjoining region to |
continuous is equivalent to the first point of that region being included in the heat conduct
equation but with the effective thermal conductivity

2k k,
K+ ke

(27)

If we had examined the heat conduction for the material on the right then the effect of
continuity of flux between the regions is to include the p¢inith the effective thermal con-
ductivity we have just derived. In summary, the heat conduction for either region can be c
puted using the adjacent point of the adjoining region but with the effective conductivity (2
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A similar argument can be used with the SPH equations. The final result is that (:
becomes

TabFab. (28)

dUa Z 4my kakb
dt — PaPb Ka + Ko
This heat conduction equation is the final one used for numerical tests throughout this pe
It ensures that heat flux is automatically continuous across material interfaces. Multi
materials with substantially different conductivities and specific heats canthen be accure
simulated. Although this equation was derived by simple arguments for a configurat
where the heat flux was parallel to the vector between adjacent particles, it will be shc
by extensive numerical tests in the following sections to be true in general.

3. BOUNDARY PARTICLES, BOUNDARY CONDITIONS, AND HEAT FLUX

All boundaries are modelled by boundary particles. These particles are assigned a n
position, density, conductivity, and temperature.

Inthe case of dynamical simulations the boundary particles interact with the fluid partic
through boundary forces that prevent the fluid passing through the boundary. The boun
forces are in the direction of the local inward normal which is also used to correctly estim
heat fluxes.

Adiabatic boundaries are simulated by integrating the energy equation for the bounc
particles together with those for the interior. Summing (28) over all particles shows tt
energy is conserved.

The implementation of isothermal boundaries is very simple since we just need to ms
tain boundary particle temperatures at the specified values. This is straightforward |
particle method. More complex flux based boundary conditions, such as radiative and «
vective ones, can also be implemented but are beyond the scope of this paper.

The calculation of the thermal flux at the boundary is more difficult because the numl
of particles falls to zero so that estimates of gradients become less accurate. The pro
is exacerbated if the thermal conductivity jumps discontinuously at the boundary.

If the boundary is adiabatic there is no flux through the boundary. If the boundary
isothermal then the flux can be calculated by forming the gradient of the temperat
(method A). Alternatively we can use the energy equation to calculate how much hee
transferred to a boundary particle after which the boundary particle temperature is set t
to the isothermal value (method B). In either case corrections must be made for the fal
in particle number density at the boundary.

Method A involves evaluating the temperature gradient at each isothermal bounc
particle location

1
Dy = —kn- VT = — Z 2mbkb(Ta - Tb)rab - NaGap, (29)
Pa

wheren, is the unit inward normal for a particeeon an isothermal boundary.

The SPH formulation of gradients assumes that there is at least one particle on ei
side of a given patrticle in the direction of the normal. For calculations involving a bounde
particle, its neighbours lie on only one side. The effective length used to estimate
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derivative is twice what it should be. The factor 2.0 arises to cancel this and give
approximately correct gradient.
To obtain the flux using method B we start with the heat conduction equation (27),

dUy my  4kakp
— = ———(Ta — Tp) Fap, 30
ot zb: paph (ka+ ko) © 0 (30)

from which we deduce that energy added or subtracted from paatjpde unit time is

my  4Kakp
AU, = ———(Ta — Tp) Fap. 31
zb: Papb (Ka + kb)( b)Fan (1)

The boundary particles are separatedy so that the thermal energy (30) must be con:
sidered transferred to (or from) this length of boundary. For the two-dimensional proble
we consider in this paper the flow of thermal energy per unit area and per unit time is the
fore

My mp  4kakp
Mo T 1, 1) Fap. 32
Arn 2y T+l (2~ TP (32

This expression should be a good approximationka - VT at the boundary particle. This
can be checked by expandiiig— T, as a Taylor series and keeping the dominant terms. W
find [6] that Eq. (31) is a very good approximation to Eq. (27) if the densijtyf boundary
particlea is

My My 4kb

_Mam M T naFa. 33
AX 5~ pp (ka-l-kb)rab flatab (33)

Pa =

By examining the terms in the summation for one- and two-dimensional configuratic
in the case where the thermal conductivity is constant we find [6] that the boundary dens|
required by Eq. (32) are always within 7% of the density of the adjacent fluid.

4. TIME INTEGRATION

The integration technique used in the present version of the SPH code is aimproved E
predictor—corrector method (see [11] for precise details). This is well suited to fluid dyna
ics problems and is used here because we intend to solve coupled heat and fluid flow f
lems. If we were intending to solve purely conduction problems then we would have u:
other schemes allowing longer timesteps. It is a common misconception that particle m
ods must use explicit time stepping and are limited to small timesteps. In fact, the choic
timestepping scheme is independent of the spatial discretisation, and any other scheme
be implemented in the same way as they would for other continuum methods such as f
differences and finite elements. In particular, implicit solution of the SPH equations is po:
ble and can be done with matrix solvers similar to those used for unstructured finite eleme

Atthe beginning of a timestep of the predictor—corrector, the existing velocities, densiti
thermal energy, and other properties are used to predict new values at the midpoint o
timestep. The rates of change of all these properties are then calculated at this midp
These are used to update the properties at the end of the timestep.
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The size of the timestep for a pure conduction problem is given by
At = Bpc,h?/k = 1.448pc, AX?/K, (34)

whereg is a constanty = 1.2Ax is the SPH smoothing length scale, aig is the particle
spacing. The timestep is proportional to the timescale for diffusion to occur across
interpolating kernel. The choice @fis limited by stability.

In order to determine an optimal value@tve performed a wide range of test simulations.
If B <0.15 the integration is stable. For the present calculations wefak®8.1. Further
details can be found in [3].

5. HEAT CONDUCTION IN SLABS

5.1. Homogeneous Case

This two-dimensional configuration consists of a finite slab of homogeneous mater
The left half is initially cold withT, =0 and the right half is hot witi; = 1. The slab has
unit width (in the direction of the temperature gradient) and various lengths. The ma
rial properties ar&k=1, c, =1, p = 1000, giving thermal diffusivitiesy = «, =0.001. In
the following subscriptd,andr refer to properties in the left and right halves, respectively
The particles were set up on a regulag By ny lattice with equal spacing in each direction.
The hot and cold regions are batl particles long. The SPH interpolation lendths
chosen to bé = Ax, whereAx is the particle spacing in the andy-directions.

The exact solution can be approximated for some time by the solution for an infinite s
with a temperature discontinuity &t= x, [8]. This is the limiting case as our slab becomes
wider. It is a good approximation while the variation in temperature of the outermost poi
is very small,

T-T, Erfc((X — Xm)/ait) if X < Xm (35)
T |14 Va/or Ef((X — Xm)/art)  0f X > X |

whereT. = (T, — T)Jar/(Jor + /ar), Xm is the location of the initial discontinuity in
temperature, and = k/pc, is the thermal diffusivity.

Figure 1 shows the temperature as a function of the distance across the slab at various
using a resolution ofi, =40 along the slab anal, = 20 across the slab. The temperatures
of all the SPH patrticles are drawn as dots. In general, each visible dot actually repres
ny particles. Any vertical dispersion of the dots corresponds to variatiofisvaith y and
represents errors in the SPH solution. The exact solution is shown by the solid curve.
Lo errorinT is 0.29% at = 0.1 and declines to 0.12% t= 1.0 s. These errors are small
even at this modest resolution. This is very important for large-scale industrial coupled t
and fluid flow solutions.

Examining Fig. 1a, we find some differences between the exact and SPH temperatur
a few positions very close to the discontinuity. The relative weights of the dots indicate t
only a couple of points have the higher errors. These maximum errors are around 3-
and are produced by edge effects at the horizontal adiabatic sides. Essentially, the
effects in the summations cause the heat transfer along the adiabatic edges to be marg
slower than that through the center of the material. It should be noted that these peak e
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FIG. 1. Temperature profile across a slab at timeg a)0.07, (b)t =4, and (c}t = 10. The exact solution is
given by the solid line, whilst the SPH solution is shown as dots.

for a few-edge particle are an order of magnitude larger than for the remainder of
interior particles, including those within the region of high-temperature gradient. This w
be discussed in more detail later. This smatlependence of the solution always decay:s
quickly and is not detectable ky=1.

Figure 1b shows the SPH and exact solutions midway through the simulation. Tl
compare very well. This is typical of the accuracy throughout the simulation. The differer
is largest near the center because the heat transfer along the adiabatic top and bott
marginally slower than that through the middle of the slab.

Byt = 650 the temperature profile has become almost uniform. Atthe left an@.4990
and at the right end =0.5010. These differences represent 0.2% variations from tt
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FIG. 2. L, L, andL, errors att =0.1 s for conduction in an infinite material with resolutiamsfrom 30
to 120. This demonstrates that the SPH spatial resolution for conduction is second order.

average temperatuiie = 0.5. The differences are symmetric and have an error of 0.019
This demonstrates that the heat content of the slab is conserved to very high accuracy

5.2. Spatial Accuracy and Convergence

To rigorously examine the spatial accuracy of the SPH conduction solution we calcul
L1, Lo, andL, norms of the pointwise error of the SPH solution from the exact solutiol
The configuration used is similar to the one just described but has periodic boundaries ir
y-direction. This eliminates the effects of boundary conditions. The solution is effective
for an infinite material with an initial temperature discontinuity.

The largest errors occur early in the simulation after a few rows of particles have ente
the high-temperature gradient region, but before the discontinuity has been smoothec
much by conduction. We therefore choose to evaluate the worst case etrer6.ats. The
temperature profile at this time is very close to the one shown in Fig. 1a.

Figure 2 shows the errors for spatial resolutions from 30 to 120. Resolutions below
do not give meaningful errors &t=0.1. This occurs because the timestep of the explici
integration is either larger than or comparable to this time interval and several timesteps
required for the errors to grow to their largest levels. For resolutions of 30 and higher th
conditions are met and the errors can be compared.

Thel , errors are the smallest (as one would expect), with.therrors being consistently
five times higher and the, errors a further factor of six times higher. Each of the thre
error curves is essentially linear with least squares sloped &34, —1.997, and—1.934,
respectively. The demonstrates both the convergence of the SPH solution towards the ¢
one and that the SPH spatial discretisation is second order accurate.

We repeat the same tests for the original configuration shows in Fig. 1 (a block
materid1 m wide and 0.5 m high with an array oh2 x ny particles and adiabatic top and
bottom edges) in order to evaluate the effect of the adiabatic boundaries on accuracy
convergence.

Figure 3 shows the three error measures for resolutions between 30 and 120. All tl
curves are again essentially linear. In absolute terms_thand L, errors are slightly



SPH CONDUCTION MODELLING 239

cF E
oL .
. O
)
j ..
(.
i
7
eF E
=
& — L1 error
o — L2 error
+ — Linf error
I

30 100

Resolution

FIG.3. L., L, andL, errors at =0.1 s for conduction in an finite slab of material with adiabatic sides for
resolutions, from 30 to 120.

higher than for the periodic boundary case, reflecting the modest larger contributions of
adiabatic edge particles. The gradients of these two lines &@75 and—2.018, respec-
tively, indicating that the inclusion of adiabatic boundaries does not reduce the second o
accuracy of the solution. Thie,, errors are produced entirely by the adiabatic particles
Increasing the resolution in thedirection does not affect these errors at all. The line
has a gradient of-1.376, indicating that the increasing resolution in thdirection im-
proves the errors for these edge particles by an amount that is closer to first order in s|
than to second. It is important to realise that the effect of these adiabatic boundary parti
decreases with increasing resolutioryirso although thé. ., error measure is not second
order, thel.; andL, measures are.

5.3. Discontinuous k

This configuration is similar to the previous one, but the slab of unit width is now perioc
in they-direction. For this test problem there are two different materials touching along t
discontinuity ax,, = 0.5. The material on the right half of the slab has a lower conductivity
Otherwise their material properties are the same. Initially, the material on the I€ft is &t
and the material on the right is &t =1. In all subcasek, =1 whilstk; is varied from 10
to 1000.

Figure 4a shows the temperature profileog 10 andt = 1 using a resolutiony = 40.

At t =0.05 there is a small difference between the SPH and the exact solutidnr= By
the two solutions are very close and by 1 they are almost indistinguishable. The SPH
solution fully captures both the shape of the temperature profile and its evolution.

The maximumL, error in the temperature of the material on the left is 9.8% at th
first timestep. This error occurs at the discontinuity and declines rapidly below 1% (
t =0.15). The material on the right has a lower thermal conductivity and so adjusts mi
slowly to changes in the material on the left. This means that the errors are higher in
less conductive material and take longer to decline. Theerror for the temperature on
the right peaks at 5.5%—=0.032 and then drops off quickly, but not as rapidly as the th
error for the left material. Thé&, errors decline with time from 0.3 to 0.1%. Overall these
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FIG. 4. The temperature across the slab forka) 10 at timet =1 and (b)k, =100 att = 0.2. The exact
solution is given by the line and the SPH temperatures by the dots.

errors are comparable to those found for the homogeneous case at the same time
resolution. The_, andL, errors are slightly higher for the less conductive material tha
for the homogeneous material, whilst the errors for the more conductive material are lo
than for the homogeneous case.

Att =337, the slabis almost at a uniform temperatur€ ef 0.5. The temperature of the
leftmost particle i = 0.49828 and that of the rightmost partidle= 0.50489. The average
of these differs from the correct average by 0.32%. This is also a measure of the ove
conservation of heat. The result, although very good, is less accurate than that obtaine
the homogeneous slab.

Figure 4b shows the temperature profile wikea:- 100 andt = 0.2. At the very earliest
times the SPH temperature profile for the material on the left has a small but noticee
separation from the exact solution. This difference decays quickly-B§.1 the separation
has become very small and the two solutions are very similar. The SPH and exact solut
are indistinguishable afté= 0.3. TheL, error has a maximum of 0.35%1at 0.05 s and
less than 0.1% dt> 0.3 s.

5.4. Discontinuous kp, and ¢

The setup for this test problem is again similar to the previous cases. The two matel
on either side of the slab now both have the same thermal diffusivity, but different valt
of k, p, andc. We choosé = ¢ =1 andey =, =0.001 and test the effect of conduction
between materials with different conductivities and heat capacities.
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The exact solution for an infinite slab with a temperature discontinuity=ak, for this
more general case is

T-T, Erfc((X — Xm) /o) if X < Xm
= , 36
Te {1+ (ki / ko) /o fog EFf((X — Xm)/art) if X > Xm o

whereTe = (T, — T) (ki / /o) /(K //ar + ki //on), xm is the location of the the disconti-
nuity.

Comparing the SPH and the exact solution wkega: ¢, = 3, we find at the very early
stages that there is only a small difference in the region of the initial temperature disc
tinuity. By t =0.2 the two solutions are very close together and byl they are almost
indistinguishable. Figure 5a shows the temperature profile for this casemtThe SPH
solution fully captures both the shape of the temperature profile and its evolution.

The errors in the temperature for the material on the left are around three times gre
than those for the material on the right. This is in line with the ratios of the conductivities a
specific heats. As usual they peak at the beginning of the simulation when the tempere
gradient at the interface is greatest. By 1 the errors are less than 1%. Again, the initial
errors decay quickly, leaving the solution highly accurate.

At t =500 the temperature of the rightmost particle$ is- 0.7510 and that of the left-
most particlesT =0.7474. The average of theseTis=0.7492. This is very close to the
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theoretical equilibrium temperature 6f= 0.75 that arises from the higher heat capacity of
the material on the right. The conservation of heat is accurate to 0.016%.

Figure 5b shows the SPH and exact solutionskioe ¢, =1 and, = 2000 for the left
material, and. = 3,¢ = 1 andp, = 1000 for the right material. As before, the SPH solution
is highly accurate.

Ratios of thermal diffusivity up to 1000:1 were tested and demonstrate similar accure
Of particular interest is the case with @itg = 0.0254,¢, = 1.012, ando, = 1.226—the left
material) and water (at 300 Kk, =0.620, ¢; =4.179, andp, = 1000—the right mate-
rial). The SPH solution and the exact solution are shown in Fig. 6 for three times in 1
early and middle stages of the evolution. The SPH solution is remarkably accurate, €
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FIG.6. Temperature profiles for conduction between air on the left and water on the right at tines@a)1,
(b)t =0.1, and (ck = 0.5.
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att =0.01, despite the very large differences in the material properties, particularly t
density.

6. CONDUCTION IN A SLAB WITH ISOTHERMAL ENDS

6.1. Homogeneous

In the previous examples the edges of the materials have been either adiabatic or peri
Here we explore the use of isothermal boundary conditions. The configuration consist
a homogeneous slab of unit width in tkedirection and periodic in thg-direction. The
left edge is maintained at temperatdye= 0 and the right edge is maintainedlat= 1. The
material on the left of the centerline< X, is initially at T, and the material on the right
is initially at T, . The material properties akg= ¢, =k, = ¢, =1 andp, = pr = 1000. Both
sides have the same thermal diffusivity= o, = 0.001.

Figure 7 shows the asymptotic temperature profile. It is almost exactly linear. The
act linear asymptotic profile is shown as the solid line. Theand L, error norms are
0.03 and 0.15%, respectively, fog = 40. This demonstrates that the isothermal boundar
formulation described earlier gives accurate results even for modest spatial resolution.

Examining the behaviour of the errors with the spatial resolution (shown in Fig. 8), \
find that the introduction of the isothermal boundary particles reduces the SPH conduc
solution to first order. This can be understood by examining the Taylor series expansi
of Eq. (28). The first order terms normally vanish because of symmetry arguments at
the balancing odd order contributions of particles to either side. If there is an isothert
boundary then there are no particles on one side and the cancellation ceases, leavin
order error terms. Using the isothermal boundaries in conjunction with the boundary den
corrections given in Eq. (33), however, improves the spatial errors to oféef 8is occurs
because of improvements to the normalisation of the kernels near the boundaries prod
by the increased density of these boundary particles.

6.2. Inhomogeneous k

For this case the material properties are the same as before excelgt=adw. Initially
the temperature is described by the error function solution in Eq. (34) and the tempera
of the interface is A(1 + +/10) ~ 0.24025. As the isothermal boundaries begin to add an

0.5 |- -

Temperature

O"l . . \ . ! . . . . L]

0 0.5 1
X

FIG. 7. The asymptotic temperature profile (at 135 is very close to the linear exact solution when hot
and cold isothermal boundary conditions are applied to the sides of the slab.
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remove heat, the temperature profiles straighten and the temperature of the interface |
asymptotically towards
T= - T) = o5 @7

The asymptotic temperature profile {at 135) shown in Fig. 9 is piecewise linear and
matches the exact solution closely. The temperature at the interface is correctly predic
The maximum difference between the SPH and the piecewise linear exact solttioh2f
is 0.29% for the less conductive material and 0.59% for the more conductive material. -
L, erroris 0.24%. The error is, as usual, larger for the more conductive material, but is
small even for modest resolutions.

This demonstrates that isothermal boundary conditions can be easily implemente
SPH by simply not changing the temperature or internal energy of the isothermal partic
boundary particles and that the solutions have satisfactory accuracy.

0.5 -

Temperature

FIG. 9. The steady temperature profile for a slab with isothermal sideE €20 andT, = 1) and a material
discontinuity atx = x,,. The material on the left hds= 10 and the one on the right hias= 1.
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6.3. Temperature-Dependent Conductivity

Next we examine the accuracy of solutions when the conductivity varies with the temf
ature. This is common when there are large temperature ranges and particularly in indus
applications.

As before, we use a semi-infinite slab of unit width with isothermal sides (one heal
T, =1 and one cooled; = 0). The initial temperature i$ =0 in the left half andl =1 in
the right half. The conductivity varies as

k(T) = e T, (38)

wherex is a constant.

Since analytic transient solutions are not available for this problem, wé&astélo (a
finite element package [9]) to generate an alternative numerical solution with which
compare. Th&astflosolution uses fully implicit timestepping and is spatially second orde
accurate with 40 quadratic elements across the width of the slab. The 80 nodes acros
width of the slab gives the same spatial resolution as the 80 SPH particles used.

Figure 10 shows a sequence of snapshots of the temperature profile for both the SPH (
and FEM (line) methods far = 4. This represents a factor of 54 variation in conductivity
across the width of the slab. There are small differences between the solutions at ¢
time, but overall they track each other (both spatially and temporally) very closely. T
FEM solution is slightly more diffusive than the SPH solution. Figure 10c shows the tv
solutions near the asymptotic limits. The FEM approaches the limit a bit more slowly th
the SPH solution. The timesteps used herexdre- 0.00412 forFastfloandAt = 0.000412
for SPH (given by the limitin Eq. (34)). The; norm of the difference between the SPH anc
Fastflosolutionsis 0.11% and tHe,, difference is about 1%. The relative error contributions
of the FEM and the SPH are unquantifiable. Importantly, the two solutions are very clos
both time and space. This level of accuracy at modest resolution is important for pract
applications involving fluid flow.

The exact solution for the the steady-state temperature profile, kdei", is given by

1 (e -1
T_;In((l_za)(x—a)—i-l), (39)

wheres§ = %Ax is the position of the first SPH particle (where the boundary conditio
T =0is applied) anc =1 —§ is the position of the last particle (where the= 1 boundary
condition is applied).

Figure 11 compares the asymptotic temperature profiles for the SPH solutions with
analytic steady-state solutions, for a range dh each case the SPH solution is very close
to the FEM solution, even when the temperature gradient adjacent to the cold isothel
boundary becomes very steep. This demonstrates that the use of the harmonic av
conductivity in the SPH heat equation (28) to ensure flux conservation when there are r:
changes in conductivity gives suitably accurate solutions.

The heat flux through either isothermal boundary, once the heat flow has reached €
librium, is

o= K}(ef( —1). (40)

Figure 12 shows the heat fluxes through both the left and the right boundaries. The s
curves are the SPH heat fluxes calculated using method B and the dashed lines sho
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FIG.10. Thetemperature profiles produced by atemperature-dependent conductivitywitht (a)t = 0.6,
(b)t=5.0, and (ct = 10. The SPH temperatures are given by the points anBak#flotemperature is given by
the curve.

fluxes using Method A (see Section 3). The horizontal dot—dash line is the exact asympt
limit for the fluxes (from Eq. (40) witlr = 4). The dotted curves are the fluxes calculatec
usingFastflo(which we expect to be highly accurate because of the use of 80 finite eleme
across the block). For each of the SPH &adtflosolutions there are two curves. The upper
ones show the hot wall heat fluxes. They rise rapidly and overshoot the asymptotic li
and then drop back asymptotically towards the limit (38). The lower curves show the ¢
wall heat fluxes. They remain zero until aroung 9. This reflects the time taken for the

front of the heated region to propagate through the comparatively less conductive mate
Once the front reaches the cold boundary the flux rises rapidly, as the conductivity of
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FIG. 11. Asymptotic temperature profiles with an exponentially temperature-dependent conductivity -
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Time

FIG. 12. Heat fluxes through the edges of the slab when the conductivity is an exponential function
temperature and = 4. The corrected densities are only calculateti-aD and periodic boundaries are used in
the vertical direction.
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material rises exponentially. The flux then also asymptotes to the limit value as the sys
approaches thermal equilibrium. An important aspect of this flow is the strong asymme
of the heat fluxes due to the net heating of the material as the conductivity increases.
indicates that the original amount of heat stored in the slab is much less than the am
stored at equilibrium.

All the heat fluxes for the hot wall (upper curves) are close at all times, with method
being particularly close to that of the accurbgestflosolution. The flux using method B for
cold wall (lower curves) is also very close to thastfloflux. There is only a modest differ-
ence as they approach the asymptotic steady limit Fhisé&floasymptotic limit differs from
the exact value by only 0.03%. The SPH solution by method B (with only 40 particles acr
the slab) is in error by 1.6%. This is quite acceptable for this resolution. This configurati
is a very strong test of the heat conduction because around 10% of the entire temper:
difference occurs between the boundary particle and the first interior particle. Methoc
gives a good representation of the evolution and the final value of the hot wall flux (wh
the temperature variation is small) but is very poor for the cold wall (where the temperat
variation is large). This occurs because this flux uses an explicit estimate of the tempere
gradient (given in Eq. (29)) and this gradient uses only the conduckiyjtyot a harmonic
mean ofk, andky,. This demonstrates that method B is a much more robust technique
calculating the heat fluxes. It is also simpler to implement and computationally faster.

If the boundary densities are corrected at each timestep to take account of the time v
tions of the conductivity near the cold wall, then the cold wall flux diverges further from tt
Fastfloflux and the error in the asymptotic limit increases to 4.0%. This is not surprisin
since Eq. (33), used to calculate the corrected densities, assumed that the variations in
ductivity adjacent to the isothermal boundary were small. For cases where the conduct
change is large, using the initial corrected densities without the conductivity variation see
to yield the best result. The corrected densities are then given by

my 2my
AX S po

Pa = l'ab - NaFab. (41)

Even when the conductivity variation is exponential (with power 4) and the resolution
modest, method B gives good results for the fluxes, their evolution, and their asympt
values. This gives us confidence that the modest conductivity variations found in indust
applications will not cause problems or any significant errors.

6.4. Sinusoidal Temperature Variation in x

This configuration consists of the usual block of homogeneous material with isoth
mal sides and adiabatic top and bottom boundaries. The material properties used
k=1,c,=1, andp =10. The density corrections were used along the isothermal bour
aries. The unit normals on the left and right boundaries are chosenrio=bél, 0) and
n, = (—1, 0), respectively. These apply even at the corners where there is a discontint
in the thermal boundary condition. If the normals at the corners are chosen to be dires
inwards at 45then there is more variation in the calculated fluxes. The initial temperatu
distribution is chosen as

/

T, y,t=0) = sinnx

T (42)
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FIG.13. Sinusoidal temperature profiles across a slab of unit width. The points indicate the SPH temperatt
whilst the curve shows the corresponding exact solution at each tihe<(&)02, (b)t = 0.5, and (c}t = 1.5.

wherel =1 — 26 is the side length of the block]; = x — §, ands = %Ax. The exact solution

for heat conduction with this geometry and set of initial conditions is

X
TX, y,t) = sin—— g=(r/D7at

(43)

A 40 x 40 array of SPH particles was used. Figure 13 shows the temperature fielc
three different times. There is clearly close correspondence between the exact and
solutions. The SPH solution predicts both the form of the profile and its evolution.

Figure 14 shows the exact and SPH values of the average fluxes absorbed by the isoth
sides as functions of time, (a) with and (b) without the density correction. The solid li
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FIG. 14. Evolution of the SPH and exact average fluxes through the isothermal boundaries of a slab wil
sinusoidal temperature profile, using the (a) corrected boundary densities and (b) uncorrected densities.

corresponds to method B and the dashed line corresponds to method A. The exact val
the flux is shown as the dot—dash line and is given by

®(y,t) =kn - VT = ke @ qt. (44)

The fluxes (with corrections) shown in Fig. 14a match the exact solution very close
with Method B being more accurate. When the corrected densities are not used (Fig. :
the accuracy of the fluxes deteriorates, with the deterioration being larger for method
In this case the error changes from a slight underestimation to an overestimation an
magnitude doubles. The most accurate method is method B using the density correcti

The errors (measured relative to the maximum flux at that time) are largest at the corn
The error in the corners quickly rises to around 8%, then slowly decreases to 4.5%
t = 2. By comparison the error in the flux across the large uniform central region begin:
0.6% and slowly declines. At=0.52 it becomes slightly larger than the exact flux. This
difference slowly increases to around 2%thy 2.

The important conclusion here is that the majority of the error in the flux is contribute
near the corners at which the adiabatic and isothermal boundaries intersect. The end ef
extend about four particle spacings from the corners. Since the interpolation is a multipl
the particle spacing, increasing resolution will not affect the number of boundary partic
with these corner errors, but will decrease their relative contribution to the overall error. |
this case the resulting average flux remains accurate to around 1% throughout the simule
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6.5. Sinusoidal Temperature Variation in x and y

In this case the temperature is a functiorx@ndy, and all the boundaries of the square
block are isothermal. The principal complication arises from the existence of corners. -
block consists of any, x ny array of particles placed on a grid with the first row and columr
aty =38 = Ax/2 andx = §, respectively. The initial temperature distribution is given by

%

. axX . my
TX,y,t=0) = smnI smnly ,
wherd = 1-24 isthe side length of the block, antl= x —§ andy’ = y—3§. The temperature
along all four isothermal edgesTs=0.
The exact solution for conduction in this geometry with this set of initial conditions is

(45)

!

X /
Ty, t) = sinnI sin# g2/ ot (46)

The material properties used here &re 1, ¢, =1.5, andp = 10 and the resolution is
ny = 40. Figure 15 shows a sequence of temperature distributions. The temperature is st
as a function of. Since there is a line of particles for each of thevalues ofy and the
temperature distribution is symmetric (with respect to reflection inxtrendy-directions
through the middle of the block) there amg/2 4 1 distinct curves in each frame. These
correspond to temperatures along different horizontal slices of the block (parallel to
x-axis). The SPH temperatures are shown as points and the exact solution for each val
y is shown as a curve. The SPH solutions are clearly very close to the exact ones. The sy
distributions of temperature in both tlxe and y-directions are highly accurate (average
relative error1%). Their temporal evolution is also extremely accurate.

The symmetry of the problem means that the heat flux through each side is identical.
flux through the boundary=6§ orx=1-§is

k d )
(y,t) =kn- VT = ”I_ sin¥ o2/ Vat @)

Figure 16 shows the evolution of the boundary flux profiles. The SPH fluxes (usi
method B) are shown as points and the exact fluxes (Eq. (47)) are given by the curve.
fluxes along the top and bottom boundaries of the §jab § and 1— §) are shown by the
solid curves and matching points. The vertical points at§ andx =1 — § correspond to
the SPH fluxes for the sides of the block. Figure 16 shows the behaviour of the bounc
fluxes throughout the evolution. The SPH fluxes are very close to the corresponding e
flux curve at each time. The largest discrepancy occurs at the end points (1.57%). The
solution clearly predicts spatial distribution of the fluxes with high accuracy. The evoluti
of the spatial distribution is also accurate.

Integrating the flux along the boundary gives an average heat transfer rate (a dimensi
version of the Nusselt number). For this case the average flux is

gy = 2K g2t/ et (48)
v | § .
Herel ; is the length of the boundary used in the SPH flux calculations. This is not the sa
as the length used in the temperature calculations. Each SPH particle represents a si
square block of material with side lengttx. The distance between the end particles (the
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FIG. 15. The temperature profiles for eagkcoordinate of the SPH particle lattice showing the various cross
sections of the two-dimensional sinusoidal temperature distribution. The points show the SPH temperatul
each particle, whilst the curves show the corresponding exact solution at times: ()2, (b)t =0.51, and
(c)t=1.01.

centers of these blocks) (®x — 1) AX, whereas the length of the real edge (over whict
the fluxes are calculated) i Ax, sol; =1 + AX. An extra 05AX is contributed by the
parts of each of the end blocks which protrude beyond the centers of the end particles.
evolution of the SPH and exact average fluxes are shown in Fig. 17. The SPH fluxes
calculated by both methods A and B for all four edges. The SPH and exact fluxes are
indistinguishable.

A series of tests were run to determine the dependence of the errbrsAoq and the
material properties. With £ h/Ax < 1.8 the errors in the maximum flux increase from
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1 to 2.3% ash/AXx increases. This means that= Ax is optimal for heat conduction.
DecreasingAx results in lower flux errors as expectedAX is reduced by a factor 4, the
maximum error is reduced by a factor 10. Further reductiafrdoes not give significant
improvement in the maximum error for this problemhif Ax is constant. Our analysis
(partly described in Section 2.2) suggests thatust decrease more slowly thaix to get
the correct limit asAx — 0. We have not explored this limit here. The errors in the SPt
fluxes were found to be completely insensitive to changés i andc, by factors of 100,

6, and 1000, respectively.

7. HOW TO SET UP BOUNDARIES

In previous tests, the edges of the particle lattice were aligned with the edge of the s
In general this is not the case. So how should we construct the boundaries in such ce
Consider heat conduction in a disc. The naive setup is to take all the particles on a la
that lie within the bounding circle and to tag the outermost ones as isothermal bounc
particles. Such an approach actually produces very poor results. An unphysical temper:
discontinuity forms just inside the isothermal particles as the boundary behaves patrti
isothermally and partially adiabatically. The problem is caused by the uneven spacing of
boundary particles. Nearby interior particles can effectively “see” through the gaps betw
the isothermal boundary particles and behave partially adiabatically. The local bound
behaviour then depends on the precise details of the particle locations. This is exagge!
by the somewhat erratic directions of the boundary normals.

We have devised simple rules for setting up isothermal boundaries. These rules
consistent with the requirements to set up physical boundaries for fluid flow:

e Boundaries should be set up separately from the interior particles unless they a
with the particle lattice.

e Boundary particles should be placed upon smoothly varying curves and should
equally spaced using the interior particle spacig

e The boundary normals should actually be perpendicular to the underlying bound
curve leading to smooth variations in the orientations of the normals.

e Interior particles withinv%Ax of the boundary should be omitted.

7.1. Conduction in a Disc

To demonstrate the importance of setting up the boundary correctly and to show the a
racy that can be obtained using the rules described above we model radial heat condu
in a disc with initial temperature distribution given by the Bessel function

Tr,0,t =0) = Jo(B1r/a), (49)

wheref; = 2.4048 is the first root of the Bessel functidg(r). The temperature along the
isothermal boundary of the discTs=0.

The exact solution for heat conduction with this geometry and initial conditions (fro
[8]) is

T(r,0,t) = Jo(Bir ja) e @B/, (50)

These simulations uge=1.0, ¢, = 1.0, andp = 1000 anchy, = 30.
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FIG. 18. Particle positions for heat conduction in a disc. The black particles are the isothermal bound
particles.

7.1.1. The naive setup.The most obvious choice of configuration for modelling hea
conduction in a disc of radius with an isothermal outer boundary involves setting up the
particles on a grid and choosing the outermost particles to be the boundary. Figure 18 st
the initial setup. The normals are chosen to be radial. The isothermal particles are ch
to be all those withids = 0.8Ax of the outer radius of the disg whereAXx is the particle
spacing. The effective radius of the disc is chosen to be the radial distance of the clo
isothermal particle to the center of the disc; increadisgncreases the thickness of the
isothermal region and decreases the effective radius of the disc.

Figure 19 shows the temperature profiles for this problem. The SPH particles apy
as points and the exact solution (Eq. (50)) is given by the solid line. These results

©

4
T
1

Temperature

FIG. 19. Radial temperature profile for naive setuptat 30.7. Note the discontinuity in the temperature
between the boundary and isothermal particles.
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FIG. 20. Particle positions for heat conduction in a disc. The black particles are the isothermal bound
particles and are placed on a circle of radius 0.5.
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very poor. A discontinuity quickly arises in the temperature at the edge of the isotherr
boundary. The temperature is uniformly overpredicted. This indicates that the heat tran
to the boundary is too small. The initial height of the discontinuity is about 7% of the pe
temperature. At =128 the average error is 14.6% and the maximum error is 28%. Tl
discontinuity indicates that large sections of the boundary are acting as an insulator ra
than as a conductor or heat bath/sink. This result may at first be surprising, but car
understood when it is recognised that the average spacing of the particles is atrd 1
The additional 20% spacing between the isothermal particles means that the outert
internal particles are partially exposed and act as adiabatic boundary particles even th
they appear to be inside the disk. This is a result of the SPH method smoothing the eff
of particles over distances 0h2This demonstrates that this method of construction o
isothermal boundaries is inappropriate.

7.1.2. A better setup.An alternative way of setting up the particles is shown in Fig. 20
Here the boundary is constructed as a circle of equally spaced particles with separe
very close to that of the interior particle separatidtr. The interior particles are placed
on a grid. Particles withia — e Ax, where O< € < 1, of the disc center are included. This
configuration has the significant advantages that the boundary is smooth, the normal
really normal to the surface at each point, and the boundary particle spacing is correct. I
the disadvantage that there are some interior points very close to the boundary particles.
question to be answered for this configuration is, How close should the interior particles
to the boundary (that is, what valuefs best) in order to ensure adequate thermal conta
between the interior and the boundary? Here we cheesé.4.

Figure 21 shows the temperature profiles for this configuration at the same time as
the naive setup shown in Fig. 19. The SPH temperatures are now extremely close tc
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FIG. 21. Radial temperature profile for conduction in a disc with a circular isothermal boundary setup :
cording to our rules at=30.7.

exponentially declining Bessel function exact solution. The SPH solution has a high dec
of radial symmetry and shows little variation from the exact values near the outer bound
This indicates that for = 0.4 the thermal contact between the boundary and the interior
satisfactory and that the uneven spacing of the interior particle with respect to the boun
particles does not affect the accuracy of the solution. This is very encouraging for ce
where the interior particles are disordered (as in a liquid).Theerrors in the temperature
(relative to the maximum temperature at that time) begin at 1% and increase to 1.59
t =128, while thel; errors begin at 0.2% and rise to 0.46%. This is a satisfactory level
error for this small resolutiotn, = 30). Forny > 30 the error does not decrease rapidly. We
are uncertain of the reason for this but the irregular particle separation from the bounc
is likely to be a significant contributor.
The exact flux through the circular isothermal boundary is

D(t) = kB Jy(B1) € * P/ (51)

whereJ; (r) is a Bessel function of first order. The heat fluxes are very accurately calcula
by both methods when the isothermal boundary is set up in the manner described ak
The maximum error for method A is 1.3% and that for method B is 1.7%. For high
resolutionny = 50 the maximum error in the flux calculated by method B reduces to 0.23¢
while the method A error increases to 3.9%. This again demonstrates the higher accura
method B. Note that the boundary density corrections formulated earlier have been use
this simulation without alteration. If they are omitted, the temperature profile and the fi
(calculated with method B) remain largely unchanged.

For very small values af the temperatures are overpredicted very close to the bounda
This causes a small increase in the error. For valuedarfyer than 0.42 there is an abrupt
decrease in accuracy. This is caused by a sharp drop in the corrected densities fron
previous range to 0.61 to 1.1 times the base density. The average boundary density is
lower. This means that the thermal connection between the interior and the boundary is n
weaker and the heat flux absorbed by the boundary is smaller. This causes the tempel
to be overpredicted, especially closer to the center. The flux calculated by method B
€ = 0.8 is initially 7% too high, but improves quickly to be only 1-2% in error. For metho
A, however, the error is 29%. This is a consistent error and unacceptable error througl
the evolution. This behaviour is characteristic of all the cases f00.42.
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Simulations for other values &f, for exampleh = 1.1Ax and 13AX, are less sensitive
to e. For the 1.1 case, there is a mild decrease in accuracy to around 1.3 from 0.8% w
increasing beyond 0.42. For the 1.3 case valuesg ab high as 0.8 give quite good results.
Sinceh=1.2Ax is our preferred choice of interpolation length (for reasons describe
earlier) some care should be taken with choosgindalues in the range 0.2-0.4 seem to be
optimal. The results are insensitive to the choice within this range.

Summarising, the temperature profiles, the fluxes, and their evolutions are all accu
to about 1% when 30 or more particles are used across the disk, the boundary is se
according to our rules, and the corrected boundary densities are used. Both methods o
calculation then give very good results.

7.2. Conduction Not Aligned with the Particle Lattice

In all the previous slab examples the direction of conduction was aligned with the parti
lattice. Itisimportant that there be no deterioration in accuracy when the conduction is aci
the lattice. We choose the worst case example by rotating a slal? g retaining the
particles on thex—y grid. The boundary particles are set up according to the rules devis
above and are not part of the interior lattice. This ensures that there are no gaps thre
which they can “see” outside the block.

The initial temperature field is the same as used earlier (Section 6.4) but rotated by -
The material properties ake=1,c, = 1, andp = 1000. The particle configuration is shown
in Fig. 22. The particle spacing in the interior is the same as in the previous calculat
(nx = 40) when the particle lattice was aligned with the conduction direction. The bounde
particles are spaced according to the rules discussed previously.

Figure 23 shows the temperature field using this configuration. The SPH and exact
lutions are very close. Thie; errors in the temperature using the packed boundary beg
at 0.12% and rise to 1.4% at=90. TheL, errors (in the middle of the block) begin
at 0.43% and rise to 3.6% at90. These errors are calculated relative to the maximur
temperature at each time so as usual, a constant absolute error rises as proportion
declining maximum temperature. These errors are very similar to the results for the |
inclined slab.

The alternative “naive” way of setting up the boundary by taking the particles on tl
original lattice that are within the inclined slab shape produces a sparse boundary.
errors in the temperature then increase substantially with. therror rising to 5.5% and
the L, errors to 8.7% (both dat= 90). The sparse boundary has effectively four times thi
errors of the dense boundary (set up according to our rules). This again demonstrate
importance of constructing isothermal boundaries according to our rules.

Figure 24 shows the fluxes (with the usual meaning for the different lines) for the dense
sparse packing of the isothermal boundaries. The flux predictions for the dense boun
(see Fig. 24a) are very close to the exact flux. The fluxes calculated by method B
particularly good with accuracy around 1-2%. This is very acceptable for a resolution
only 29x 29. Conversely, the flux predictions for the sparse boundary configuration :
extremely poor. The errors of up to 25% for this case again highlight the importance
appropriate setup for the boundary particles and their normals.

Conduction in an annulus was also tested. As a general rule, conduction around the i
hole for which the hole is larger than 10 particle diameters and through solids that are at |
10 particles thick is well resolved and accurate to better than 1% for both the tempera
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FIG. 22. Particles used to model conduction in an inclined slab with the packed boundary set up accort
to the rules devised in the text.

profiles and the isothermal boundary fluxes. If the hole is smaller than 10 particles in wic
then a higher resolution will be needed in order to ensure the accuracy of the calculatio
minimum number of 10 particles continually recurs throughout this work on conduction.
minimum of 10 particles are needed to resolve conduction properly, regardless of the ne
of the complications to the heat flow.

0.5 .

Temperature

O_I . ! . i I ]

0 0.2 0.4 0.6
X

FIG. 23. The temperature across the inclined slab (along thedsterline) at = 50. The points indicate the
SPH temperatures, whilst the curve shows the corresponding exact solution.
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FIG. 24. Evolution of the SPH and exact average fluxes through the isothermal boundaries of the inclir
slab, (a) using the packed packed boundary resulting from the rules described in the text and (b) using the s
boundary produced by selecting boundary from the lattice.

8. CONDUCTION FOR DISORDERED PARTICLES

The accuracy of the solutions of the heat equation was examined for the case wher:
particles are disordered. This is a particularly important case, since the particle positi
usually become disordered whenever a fluid is being modelled.

It is not appropriate to choose random positions for the particles, since these are
indicative of the positions that the particles will occupy during fluid flow simulations
We set up the particle locations in the following way. An initigl x ny lattice of parti-
cles is chosen. The outermost particles are fixed to form a box. The inner particles
allowed to move as a fluid. The SPH equations governing this motion can be founc
[11, 12]. The fluid (with viscosity parameter= 0.01) rearranges itself into a standard
disordered SPH patrticle structure. Gravity is turned off so that the pressure througt
the slightly compressible fluid equalises and the fluid maintains equal contact with the
boundary as it has with the bottom boundary. For this part the fluid is made very visce
a=0.1 so that the pressure and density fluctuations begin to damp out. A third step v
«a =1 damps out all remaining disturbances. The fluid particles are then fixed in sp
and the required initial temperature distribution and thermal boundary conditions are
plied. This produces the initial state for the simulations. A typical example is shown
Fig. 25.

We model conduction in a homogeneous square block with a sinusoidal tempera
profile. This test problem is then the same as the one in Section 6.4 except that the int
particles are now disordered. The density corrections are again used along the isothe
boundaries.
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FIG. 25. The particle positions for conduction is a slab modelled with disordered patrticles.

Figure 26 shows the temperature field at three different times. There is a close corres
dence between the exact (curve) and SPH (point) solutions. The SPH simulation track:
exact solution closely giving the correct spatial distribution and the correct temporal e
lution of the temperature distribution. Comparing these to Figs. 13 and 23 we find that
disordered and ordered particles produce similarly accurate solutions. The spatial disc
of the particles introduces only a small amount of variation in the temperature profile. T
appears as a slight spread of the SPH points around the exact solution. The magnitu
this variation is very small and does not increase (in absolute terms) with time. Importat
the SPH points are distributed evenly above and below the exact solution so that the
no consistent error in the mean underlying solution. The average error in the tempers
begins at 0.13% and rises slowly to 0.91%at1.5. The variation of the SPH points around
the exact solution initially lies in the range 0.9 to 2.3%.

Figure 27 shows very close agreement between the exact (dashed line) and SPH (
line) values of the average fluxes through the isothermal boundaries as a function of ti
The initial and the peak errors are actually smaller for the disordered particles. The f
errors are comparable. The average fluxes through the hot and cold walls have slig
different values initially (about 0.7%). This difference quickly vanishes as the temperat
field adjusts to the disordered particle structure and the heat entering one side then
balances the heat leaving the other. Overall, the average heat transfer rates are remal
accurate for disordered particles in this configuration.

Similar tests using two-dimensional temperature distributions reveal similar accur:
when using disordered particles. This gives us substantial confidence in the ability of
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FIG. 26. The temperature profiles across the slab of disordered particles. The points indicate the SPH
peratures, whilst the curve shows the corresponding exact solution at each titme @5, (b)t=0.5, and

(c)t=15.
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Evolution of the SPH and exact average fluxes through the isothermal boundaries for the disorde
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this SPH formulation to correctly model conduction within fluids and between fluids a
solids.

9. CONCLUSIONS

A form of the SPH energy equation has been developed that ensures continuity of |
flux across discontinuities in density, specific heat, and conductivity and when there
significant continuous spatial variations in material properties. A set of rules have bt
formulated for the construction of isothermal boundaries that lead to accurate solutic
Simulations of heat conduction in homogeneous slabs and discs and multi-material s
were performed for a wide range of initial conditions. The predicted transient temperat
distributions and heat fluxes through isothermal boundaries compare well with avails
exact solutions. In particular, the solution for an infinite material with a steep temperat
discontinuity was found to be second order accurate. The inclusion of isothermal bounc
conditions reduces the scheme to first order. Density corrections for the boundary parti
were developed which improve the order of accuracy to 1.5 and also improve the accu
of flux predictions. The level of accuracy at modest resolution is better than 1% for a w
range of problems with increasing complexity.

Specifically, we have found:

e The SPH methodology is very robust for modelling thermal conduction, since errc
do not propagate or grow, but rather decay.

e The edges of solid materials are naturally adiabatic in the SPH formulation. Ad
batic boundaries do not affect the order of accuracy and result in only a marginal decre
in the actual level of accuracy.

e Total heat content is extremely well conserved in insulated materials.

e More than 10 particles in a region of large temperature variation is a sufficie
number to predict the temperature distribution and its evolution with good accuracy.

e Conduction between materials of vastly different densities, specific heats, and c
ductivities can be accurately modelled. In particular, the solution for conduction betwe
air and water is extremely accurate.

¢ Isothermal boundary conditions can be easily implemented in SPH by simply r
undating the temperature or internal energy of the isothermal particles at each timeste

e For slabs with isothermal sides, the solutions at early times agree closely w
analytic solutions (when they exist).

e The asymptotic temperature profiles in slabs made from two materials with differe
conductivities are correctly predicted, as is the temperature at the interface.

e For materials with highly temperature-dependent conductivities the SPH solutior
also very accurate.

e Isothermal boundary density corrections were obtained that improve the accur
of the flux and temperature predictions of the SPH method and also increase the ordk
accuracy. For modest resolution the accuracy (compared to exaEaatftbsolutions) is
better than 1%.

e Heat conduction calculations were performed using disordered particles in a ra
of one- and two-dimensional configurations, involving isothermal and adiabatic boundar
The accuracy using these disordered particles varied between applications. In some cas
solutions (both temperature and heat flux) were more accurate for the disordered part
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than for the ordered particles. In other cases the reverse was true. In general the amot
variation was not large. This is a crucial test which benchmarks our formulation for flu
dynamical calculations.

e The particle spacing in the isothermal boundaries is crucial to ensuring its behavi

as ahomogeneous isothermal boundary. Separations comparable to the interior particle
spacing give excellent results.

e With a good implementation of the isothermal boundaries, the heat conductior

equally accurate whether parallel to the lines of particles or inclined to them, that is,
conduction simulations are not prejudiced by the directions of the particle grid.

N
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