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Heat transfer is very important in many industrial and geophysical problems. Be-
cause these problems often have complicated fluid dynamics, there are advantages
in solving them using Lagrangian methods like smoothed particle hydrodynamics
(SPH). Since SPH particles become disordered, the second derivative terms may
be estimated poorly, especially when materials with different properties are adja-
cent. In this paper we show how a simple alteration to the standard SPH formu-
lation ensures continuity of heat flux across discontinuities in material properties.
A set of rules is formulated for the construction of isothermal boundaries leading
to accurate conduction solutions. A method for accurate prediction of heat fluxes
through isothermal boundaries is also given. The accuracy of the SPH conduction
solutions is demonstrated through a sequence of test problems of increasing com-
plexity. c© 1999 Academic Press

1. INTRODUCTION

Many of the problems of geophysical and industrial fluid dynamics involve complex
flows. A typical example is a process involving more than one material and more than one
phase with interfaces which may lead to wave breaking and splash. Thermal and chemical
processes present further complications.

The simulation of such systems can sometimes present difficulties for finite difference
and finite element methods, particularly when coupled with complex free surface motion.
For example, the relatively simple problem of a wave overturning and breaking on a free
surface can only be followed with these methods until the overturning wave touches the
fluid [10]. By comparison, smoothed particle hydrodynamics (SPH) (for a review see [11])
can easily follow wave breaking. Furthermore it provides a reasonable simulation of splash
on a length scale exceeding that where surface tension must be included [13].
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The flexibility of SPH arises because a grid is not needed except as a bookkeeping device.
Derivatives are calculated by exactly differentiating an interpolation formula. However, the
greater the disorder of the particles, the less accurate the derivatives, and second and higher
derivatives must be treated with particular care. For example, a successful SPH algorithm
for simulating the dynamics of fluids, including liquid metals, in which thermal conduction
is important, requires a robust method of calculating second derivatives. Brookshaw [2]
proposed one such method and his numerical experiments confirmed that it worked well
for problems with constant or slowly varying thermal conductivity. However, in many
industrial problems the thermal conductivity can change rapidly, or even discontinuously,
because different materials (for example, air and metal) are in contact. The form of the heat
conduction equation given by Brookshaw does not work well in these cases because it does
not ensure continuity of the heat flux.

In this paper we describe an SPH algorithm for heat conduction which works well even
when the thermal conductivity changes discontinuously or is a sensitive function of the
temperature. Conductivity ratios of up to 1000:1 between adjacent materials were tested
successfully. We also show how to construct boundary conditions so that the flux of heat
across the boundary is accurate. To confirm that our method is not sensitive to the particle
configuration we also apply the algorithm to configurations where the boundaries are straight
but not aligned with the particles, where the boundaries are curved and where the particle
positions are those that occur in a dynamical simulation. In all cases the algorithm produces
very accurate results.

This SPH algorithm for accurately treating heat conduction was developed so that the
method could be applied to complex industrial free surface flow problems involving heat
transfer, such as multi-material flows in electric arc furnaces and high-pressure die casting
of metal automotive components. Even though the ultimate aim of this work is to apply the
heat transfer method to nonisothermal free surface flows, it is necessary that it be able to
accurately predict conduction in solids with strongly varying and discontinuous material
properties in configurations of geometric complexity. If one were principally interested in
solving heat conduction in solids then more conventional fixed grid or mesh methods would
be more suitable.

For coupled heat and fluid flows where there are large deformations in the material bound-
aries, the SPH method offers significant advantages over conventional methods. Demon-
strating the accuracy of these solutions is well beyond the scope of the present paper (partly
because of the difficulty in obtaining either numerical or experimental results with which
to compare them and partly because simulation of pure conduction is already a significant
advance). SPH has been shown to also give results which agree well with high-accuracy
finite element solutions for natural convection in a cavity at low and medium Rayleigh
numbers [5], suggesting that the jump to the more complex flows is unlikely to be difficult
for this method.

2. THE SPH METHOD

A review of SPH is given in [11]. This describes briefly the connection to earlier particle
methods and the overall methodology. Here we are interested in the construction of SPH
equations that correspond to the thermal energy equation. For SPH calculations we assume
the medium and the boundary are represented by a set of particles. Particlea has massma,
densityρa, thermal conductivityka, temperatureTa, energy per unit massua, and positionr a.
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The interpolated value of a functionA at positionr is given by

A(r) =
∑

b

mb
Ab

ρb
W(r − rb, h), (1)

whereW is a spline based interpolation kernel of radius 2h and the summation occurs over
all particlesb within the radius of the kernel centered on positionr (see [11] for details).

The gradient of the functionA can be obtained by analytically differentiating the inter-
polation formula (1). Thus,

∇A(r) =
∑

b

mb
Ab

ρb
∇W(r − rb, h). (2)

Since the kernels are similar in form and symmetry to a Gaussian we can always write

∇Wab = rabFab, (3)

whererab = ra − rb andFab is a scalar function≤0.
As an example of (1) the density can be evaluated by

ρa =
∑

b

mbWab, (4)

whereWab=W(ra − rb, h), though in practice it is often an advantage to calculate the
density from the continuity equation which, in SPH form, can be written

dρa

dt
=
∑

b

mbvab · ∇aWab, (5)

wherevab= va− vb. This notation is used for vectors throughout this paper.∇a denotes
that gradient derivatives are taken with respect to the coordinates of particlea.

In all the simulations presented in this paper we use a cubic kernel constructed from two
B-splines requiring that both the kernel and its derivative be continuous. The kernel is

W(q, h) = 15

7π


2
3 − q2+ 1

2q3, 0< q < 1

1
6(2− q)3, 1< q < 2

0, otherwise

, (6)

whereq = rab/h. This is a relatively low-order kernel with around 18 neighbouring particles
contributing to the interpolated quantities at each particle location. For many fluid dynamic
applications quartic kernels are used with an average of around 28 neighbouring particles
contributing. These higher order kernels demonstrate higher accuracy and stability. The
results presented here for heat conduction using the lower order cubic kernel are therefore
really worst case results which can be improved further by using higher order kernels.
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2.1. The General Energy Equation

A very general energy equation for fluid flows (eq. 10.1-13 from [1]) is

ρ
DU

Dt
= −∇ · q− P(∇ · v)− (τ :∇v), (7)

whereU is the thermal energy/mass,ρ is the density,P is the pressure,v is the velocity, and
τ is the stress. The terms on the RHS of (6) correspond to conduction, reversible internal
energy changes caused by compression, and irreversible losses due to viscous dissipation.

The conductive heat flux is given by

q = −k∇T, (8)

whereT is the temperature andk is the conductivity.k may depend onT and on other
material properties. Assuming that the fluid is Newtonian allows the viscous dissipation to
be rewritten as8v (see [1, p. 316]). The energy equation then becomes

ρ
DU

Dt
= ∇ · (k∇T)− P(∇ · v)+ µ8v. (9)

No other simplifying assumptions having been made in the derivation of this equation.
The energy equation can be rewritten in terms of the temperature,

ρcv
DT

Dt
= ∇ · (k∇T)− T

(
∂P

∂T

)
V

(∇ · v)+ µ8v, (10)

whereV is volume/unit mass andµ is the dynamic viscosity.
If the fluid is ideal then the flow is adiabatic and reversible. The equation of state for an

ideal gas is

P = ρRT, implying

(
∂P

∂T

)
V

= P

T
. (11)

The energy equation expressed in terms ofT then becomes

ρcv
DT

Dt
= ∇ · (k∇T)− P(∇ · v)+ µ8v. (12)

One can use either the internal energy or the temperature as the principal variable for
determining the heat flows. If the connection between internal energy and temperature is
simple, for example,

U = cvT, (13)

then Eq. (12) follows immediately from Eq. (9). If the functional relationship between in-
ternal energy and temperature is more complex, as is the case for liquid metals, then the
internal energy equation (9) is the more appropriate of the two. For more complex thermo-
dynamic processes, such as those involving phase changes, the enthalpyH is generally a
better choice of independent variable with the governing equation being similar to Eq. (9),
with H replacingU .
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Distributed heat sources and sinks of magnitudeε per unit volume can be added to the
right-hand sides of either (9) or (12).

For conduction in an incompressible solid the energy equation reduces to

ρ
dU

dt
= ∇ · (k∇T). (14)

2.2. A Preliminary SPH Conduction Equation and Error Estimates

The simplest way to construct an SPH heat conduction equation would be to start with
an interpolatedT and form its gradient by exact differentiation, then multiply byk, and
then differentiate again to form the divergence. However, the resulting expression is too
sensitive to particle disorder to be of practical use. A better approach is to explore integral
approximants to the thermal conduction equation. For an ideal gas whereξ = k/ρ we use
the integral approximant

2
∫
ρ(r ′)

ξ(r ′)+ ξ(r)
ρ(r ′)+ ρ(r) [T(r)− T(r ′)]G(r − r ′) dr ′, (15)

with

G(q) = q · ∇W(q)
q2+ η2

, (16)

whereη= 0.01h acts as a clipping constant to prevent singularities when the positions of
two particles with different temperatures coincide. Although we have retained this form of
G, the spherically symmetric kernel we use allows us to write

∇W(q) = qF(q), (17)

and then we can takeG= F with no singularities.
On converting (15) to SPH form we find

1

ρ
∇ · (ρξ∇T) = 2

∑
b

mb
ξa + ξb

ρa + ρb
(Ta − Tb)Fab, (18)

whereFab= F(ra − rb). Whenk is constant or a function of the temperature we use the
integral approximant

1

ρ(r)

∫
[k(r ′)+ k(r)][T(r)− T(r ′)]G(r − r ′) dr ′, (19)

which in SPH form is

1

ρ
∇ · (k∇T) =

∑
b

mb

ρaρb
(ka + kb)(Ta − Tb)Fab. (20)

The SPH form of the heat equation (14) is then

∂Ua

∂t
=
∑

b

mb

ρaρb
(ka + kb)(Ta − Tb)Fab. (21)
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TABLE I

Coefficient of Conduction Term in PDE for Various Values ofh/∆x

and Different Order Interpolation Kernels

Kernel 1.0 1.2 1.5 1.8 2.0

Cubic 1.0000 1.0224 0.9877 0.9907 1.0000
Quartic 1.0000 0.9967 1.0034 1.0012 1.0000
Gaussian 0.9981 1.0000 1.0000 1.0000 0.9987

This approximation to the heat conduction equation conserves total thermal energy and
ensures that the entropy increases.

An estimate of the accuracy of this summation can be made for the case of equispaced
particles modelling a homogeneous material in one dimension. After Taylor series expansion
of Tb we find

∂U

∂t
= αk

∂2T

∂x2
+ β1x2∂

4T

∂x4
+ · · ·. (22)

For consistency with the original partial differential equation the coefficientα should be 1.
The second term on the right is the lowest order error term which is spatially second
order.

The coefficientα andβ are given by summations ofFab. Table I gives the values ofα
for a Gaussian, the cubic kernel (6), and a quartic kernel. The summation for the infinite
Gaussian kernel is truncated after five terms of the series expansion. Forh/1x= 1 both
the cubic and the quartic kernels haveα= 1 and are consistent with the original PDE. For
h/1x= 1.2 the value ofα is slightly higher than unity for the cubic kernel and slightly
lower than unity for the quartic one. Ash/1x increasesα→ 1 for both these kernels. This
reflects increasing numbers of particles in the summations which approximate the original
integrals progressively more exactly. However, ash/1x increases, the computational cost
increases, so there is a trade-off between accuracy/consistency and speed. In this paper
we choose the worst combination of the cubic kernel andh/1x= 1.2 and show that the
numerical performance of even this case is very good. The other combinations of kernel and
smoothing length are expected to perform even better than this. The error in the coefficient
α manifests as a proportional error in the thermal diffusivity. This can complicate efforts to
establish the order of the error terms. The coefficientβ of the error term forh/1x= 1.2 is
0.123, 0.150, and 0.180 for the cubic, quartic, and Gaussian kernels, respectively.

If the integrals are done exactly (meaning that if there are an infinite number of particles
in the summations in Eq. (21) then theO(1x2) and higher order error terms vanish in
Eq. (22)) then there are stillO(h2) errors because this integral differs from the actual heat
conduction∇ · (k∇T) term by O(h2) errors. So, as we increaseh/1x, the summations
approximate the integrals better but the error term associated with the original interpolation
increases slowly. The situation with disordered particles is even more complicated. The in-
tegral interpolant still has the same errorO(h2) but the summation introduces errors which
are probably larger thanO(1x2). If we could use arbitrarily many particles we could reduce
h more slowly than the particle spacing (even if disordered), and the summation would be
very close to the integral and the overall error would beO(h2).
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While it is possible to analytically quantify the errors in terms of particle spacing and
kernel for very simple configurations described above (homogeneous properties, equispaced
particles, no discontinuities), it is not possible to do so for general configurations, especially
when the particles are disordered. We therefore examine the convergence and accuracy of
the SPH conduction algorithm by numerical means later in this paper.

2.3. Discontinuous Thermal Conductivity

To take into account a discontinuous thermal conductivity we consider the simple problem
of heat conduction in one dimensionx with thermal conductivitykl if x< 0 andkr if x> 0.

In order to solve this problem the usual procedure is to solve the heat conduction problem
separately in each region and require that the heat flux be continuous at the interface between
the regions.

If we use finite differences with points spaced by1x, and denote the temperature at the
interface byT∗, the condition that the flux be continuous gives

kl
(T∗ − Tj )

1x/2
= kr

(Tj+1− T∗)
1x/2

, (23)

where pointj is the last point on the left of the interface and pointj + 1 is the first on the
right of the interface. We then find

T∗ = kr Tj+1+ kl Tj

kr + kl
. (24)

To solve the heat conduction equation for the material withx< 0 we approximate the
conduction equation at the pointj by

∂u j

∂t
= kL

(
(T∗ − Tj )

1x/2
− (Tj − Tj−1)

(1x)

)
1

1x
. (25)

If we now substitute forT∗ we find

∂u j

∂t
=
(

2(Tj+1− Tj )kLkR

(kL + kR)1x
− kL(Tj − Tj−1)

1x

)
1

1x
. (26)

This result shows us that the effect of requiring the flux into the adjoining region to be
continuous is equivalent to the first point of that region being included in the heat conduction
equation but with the effective thermal conductivity

2kl kr

kl + kr
. (27)

If we had examined the heat conduction for the material on the right then the effect of the
continuity of flux between the regions is to include the pointj with the effective thermal con-
ductivity we have just derived. In summary, the heat conduction for either region can be com-
puted using the adjacent point of the adjoining region but with the effective conductivity (27).
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A similar argument can be used with the SPH equations. The final result is that (21)
becomes

dUa

dt
=
∑

b

4mb

ρaρb

kakb

ka + kb
TabFab. (28)

This heat conduction equation is the final one used for numerical tests throughout this paper.
It ensures that heat flux is automatically continuous across material interfaces. Multiple
materials with substantially different conductivities and specific heats can then be accurately
simulated. Although this equation was derived by simple arguments for a configuration
where the heat flux was parallel to the vector between adjacent particles, it will be shown
by extensive numerical tests in the following sections to be true in general.

3. BOUNDARY PARTICLES, BOUNDARY CONDITIONS, AND HEAT FLUX

All boundaries are modelled by boundary particles. These particles are assigned a mass,
position, density, conductivity, and temperature.

In the case of dynamical simulations the boundary particles interact with the fluid particles
through boundary forces that prevent the fluid passing through the boundary. The boundary
forces are in the direction of the local inward normal which is also used to correctly estimate
heat fluxes.

Adiabatic boundaries are simulated by integrating the energy equation for the boundary
particles together with those for the interior. Summing (28) over all particles shows that
energy is conserved.

The implementation of isothermal boundaries is very simple since we just need to main-
tain boundary particle temperatures at the specified values. This is straightforward in a
particle method. More complex flux based boundary conditions, such as radiative and con-
vective ones, can also be implemented but are beyond the scope of this paper.

The calculation of the thermal flux at the boundary is more difficult because the number
of particles falls to zero so that estimates of gradients become less accurate. The problem
is exacerbated if the thermal conductivity jumps discontinuously at the boundary.

If the boundary is adiabatic there is no flux through the boundary. If the boundary is
isothermal then the flux can be calculated by forming the gradient of the temperature
(method A). Alternatively we can use the energy equation to calculate how much heat is
transferred to a boundary particle after which the boundary particle temperature is set back
to the isothermal value (method B). In either case corrections must be made for the falloff
in particle number density at the boundary.

Method A involves evaluating the temperature gradient at each isothermal boundary
particle location

8a = −kn · ∇T = 1

ρa

∑
b

2mbkb(Ta − Tb)rab · naGab, (29)

wherena is the unit inward normal for a particlea on an isothermal boundary.
The SPH formulation of gradients assumes that there is at least one particle on either

side of a given particle in the direction of the normal. For calculations involving a boundary
particle, its neighbours lie on only one side. The effective length used to estimate the
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derivative is twice what it should be. The factor 2.0 arises to cancel this and give an
approximately correct gradient.

To obtain the flux using method B we start with the heat conduction equation (27),

∂ua

∂t
=
∑

b

mb

ρaρb

4kakb

(ka + kb)
(Ta − Tb)Fab, (30)

from which we deduce that energy added or subtracted from particlea per unit time is

1Ua =
∑

b

mb

ρaρb

4kakb

(ka + kb)
(Ta − Tb)Fab. (31)

The boundary particles are separated by1x so that the thermal energy (30) must be con-
sidered transferred to (or from) this length of boundary. For the two-dimensional problems
we consider in this paper the flow of thermal energy per unit area and per unit time is there-
fore

ma

1xρa

∑
b

mb

ρb

4kakb

(ka + kb)
(Ta − Tb)Fab. (32)

This expression should be a good approximation to−kn ·∇T at the boundary particle. This
can be checked by expandingTa−Tb as a Taylor series and keeping the dominant terms. We
find [6] that Eq. (31) is a very good approximation to Eq. (27) if the densityρa of boundary
particlea is

ρa = −ma

1x

∑
b

mb

ρb

4kb

(ka + kb)
rab · naFab. (33)

By examining the terms in the summation for one- and two-dimensional configurations
in the case where the thermal conductivity is constant we find [6] that the boundary densities
required by Eq. (32) are always within 7% of the density of the adjacent fluid.

4. TIME INTEGRATION

The integration technique used in the present version of the SPH code is a improved Euler
predictor–corrector method (see [11] for precise details). This is well suited to fluid dynam-
ics problems and is used here because we intend to solve coupled heat and fluid flow prob-
lems. If we were intending to solve purely conduction problems then we would have used
other schemes allowing longer timesteps. It is a common misconception that particle meth-
ods must use explicit time stepping and are limited to small timesteps. In fact, the choice of
timestepping scheme is independent of the spatial discretisation, and any other scheme could
be implemented in the same way as they would for other continuum methods such as finite
differences and finite elements. In particular, implicit solution of the SPH equations is possi-
ble and can be done with matrix solvers similar to those used for unstructured finite elements.

At the beginning of a timestep of the predictor–corrector, the existing velocities, densities,
thermal energy, and other properties are used to predict new values at the midpoint of the
timestep. The rates of change of all these properties are then calculated at this midpoint.
These are used to update the properties at the end of the timestep.
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The size of the timestep for a pure conduction problem is given by

1t = βρcvh
2/k = 1.44βρcv1x2/k, (34)

whereβ is a constant,h= 1.21x is the SPH smoothing length scale, and1x is the particle
spacing. The timestep is proportional to the timescale for diffusion to occur across the
interpolating kernel. The choice ofβ is limited by stability.

In order to determine an optimal value ofβ we performed a wide range of test simulations.
If β ≤ 0.15 the integration is stable. For the present calculations we takeβ = 0.1. Further
details can be found in [3].

5. HEAT CONDUCTION IN SLABS

5.1. Homogeneous Case

This two-dimensional configuration consists of a finite slab of homogeneous material.
The left half is initially cold withTl = 0 and the right half is hot withTr = 1. The slab has
unit width (in the direction of the temperature gradient) and various lengths. The mate-
rial properties arek= 1, cv = 1, ρ= 1000, giving thermal diffusivitiesαl =αr = 0.001. In
the following subscripts,l andr refer to properties in the left and right halves, respectively.
The particles were set up on a regular 2nx by ny lattice with equal spacing in each direction.
The hot and cold regions are bothnx particles long. The SPH interpolation lengthh is
chosen to beh=1x, where1x is the particle spacing in thex- andy-directions.

The exact solution can be approximated for some time by the solution for an infinite slab
with a temperature discontinuity atx= xm [8]. This is the limiting case as our slab becomes
wider. It is a good approximation while the variation in temperature of the outermost points
is very small,

T − Tl

Tc
=
{

Erfc((x − xm)/αl t) if x < xm

1+√αl/αr Erf((x − xm)/αr t) if x > xm

, (35)

whereTc= (Tr − Tl )
√
αl/(
√
αr + √αl ), xm is the location of the initial discontinuity in

temperature, andα= k/ρcv is the thermal diffusivity.
Figure 1 shows the temperature as a function of the distance across the slab at various times

using a resolution ofnx = 40 along the slab andny= 20 across the slab. The temperatures
of all the SPH particles are drawn as dots. In general, each visible dot actually represents
ny particles. Any vertical dispersion of the dots corresponds to variations ofT with y and
represents errors in the SPH solution. The exact solution is shown by the solid curve. The
L2 error inT is 0.29% att = 0.1 and declines to 0.12% att = 1.0 s. These errors are small
even at this modest resolution. This is very important for large-scale industrial coupled heat
and fluid flow solutions.

Examining Fig. 1a, we find some differences between the exact and SPH temperature for
a few positions very close to the discontinuity. The relative weights of the dots indicate that
only a couple of points have the higher errors. These maximum errors are around 3–4%
and are produced by edge effects at the horizontal adiabatic sides. Essentially, the edge
effects in the summations cause the heat transfer along the adiabatic edges to be marginally
slower than that through the center of the material. It should be noted that these peak errors
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FIG. 1. Temperature profile across a slab at times (a)t = 0.07, (b)t = 4, and (c)t = 10. The exact solution is
given by the solid line, whilst the SPH solution is shown as dots.

for a few-edge particle are an order of magnitude larger than for the remainder of the
interior particles, including those within the region of high-temperature gradient. This will
be discussed in more detail later. This smally dependence of the solution always decays
quickly and is not detectable byt = 1.

Figure 1b shows the SPH and exact solutions midway through the simulation. They
compare very well. This is typical of the accuracy throughout the simulation. The difference
is largest near the center because the heat transfer along the adiabatic top and bottom is
marginally slower than that through the middle of the slab.

By t = 650 the temperature profile has become almost uniform. At the left andT = 0.4990
and at the right endT = 0.5010. These differences represent 0.2% variations from the



238 CLEARY AND MONAGHAN

FIG. 2. L1, L2, andL∞ errors att = 0.1 s for conduction in an infinite material with resolutionsnx from 30
to 120. This demonstrates that the SPH spatial resolution for conduction is second order.

average temperatureTc= 0.5. The differences are symmetric and have an error of 0.01%.
This demonstrates that the heat content of the slab is conserved to very high accuracy.

5.2. Spatial Accuracy and Convergence

To rigorously examine the spatial accuracy of the SPH conduction solution we calculate
L1, L2, andL∞ norms of the pointwise error of the SPH solution from the exact solution.
The configuration used is similar to the one just described but has periodic boundaries in the
y-direction. This eliminates the effects of boundary conditions. The solution is effectively
for an infinite material with an initial temperature discontinuity.

The largest errors occur early in the simulation after a few rows of particles have entered
the high-temperature gradient region, but before the discontinuity has been smoothed out
much by conduction. We therefore choose to evaluate the worst case errors att = 0.1 s. The
temperature profile at this time is very close to the one shown in Fig. 1a.

Figure 2 shows the errors for spatial resolutions from 30 to 120. Resolutions below 30
do not give meaningful errors att = 0.1. This occurs because the timestep of the explicit
integration is either larger than or comparable to this time interval and several timesteps are
required for the errors to grow to their largest levels. For resolutions of 30 and higher these
conditions are met and the errors can be compared.

TheL1 errors are the smallest (as one would expect), with theL2 errors being consistently
five times higher and theL∞ errors a further factor of six times higher. Each of the three
error curves is essentially linear with least squares slopes of−1.934,−1.997, and−1.934,
respectively. The demonstrates both the convergence of the SPH solution towards the exact
one and that the SPH spatial discretisation is second order accurate.

We repeat the same tests for the original configuration shows in Fig. 1 (a block of
material 1 m wide and 0.5 m high with an array of 2nx × nx particles and adiabatic top and
bottom edges) in order to evaluate the effect of the adiabatic boundaries on accuracy and
convergence.

Figure 3 shows the three error measures for resolutions between 30 and 120. All three
curves are again essentially linear. In absolute terms theL1 and L2 errors are slightly
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FIG. 3. L1, L2, andL∞ errors att = 0.1 s for conduction in an finite slab of material with adiabatic sides for
resolutionsnx from 30 to 120.

higher than for the periodic boundary case, reflecting the modest larger contributions of the
adiabatic edge particles. The gradients of these two lines are−1.975 and−2.018, respec-
tively, indicating that the inclusion of adiabatic boundaries does not reduce the second order
accuracy of the solution. TheL∞ errors are produced entirely by the adiabatic particles.
Increasing the resolution in they-direction does not affect these errors at all. TheL∞ line
has a gradient of−1.376, indicating that the increasing resolution in thex-direction im-
proves the errors for these edge particles by an amount that is closer to first order in space
than to second. It is important to realise that the effect of these adiabatic boundary particles
decreases with increasing resolution iny, so although theL∞ error measure is not second
order, theL1 andL2 measures are.

5.3. Discontinuous k

This configuration is similar to the previous one, but the slab of unit width is now periodic
in they-direction. For this test problem there are two different materials touching along the
discontinuity atxm= 0.5. The material on the right half of the slab has a lower conductivity.
Otherwise their material properties are the same. Initially, the material on the left is atTl = 0
and the material on the right is atTr = 1. In all subcaseskr = 1 whilst kl is varied from 10
to 1000.

Figure 4a shows the temperature profile forkl = 10 andt = 1 using a resolutionnx= 40.
At t = 0.05 there is a small difference between the SPH and the exact solution. Byt = 0.2
the two solutions are very close and byt = 1 they are almost indistinguishable. The SPH
solution fully captures both the shape of the temperature profile and its evolution.

The maximumL∞ error in the temperature of the material on the left is 9.8% at the
first timestep. This error occurs at the discontinuity and declines rapidly below 1% (by
t = 0.15). The material on the right has a lower thermal conductivity and so adjusts more
slowly to changes in the material on the left. This means that the errors are higher in the
less conductive material and take longer to decline. TheL∞ error for the temperature on
the right peaks at 5.5%t = 0.032 and then drops off quickly, but not as rapidly as the the
error for the left material. TheL2 errors decline with time from 0.3 to 0.1%. Overall these
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FIG. 4. The temperature across the slab for (a)kl = 10 at timet = 1 and (b)kl = 100 att = 0.2. The exact
solution is given by the line and the SPH temperatures by the dots.

errors are comparable to those found for the homogeneous case at the same times and
resolution. TheL2 andL∞ errors are slightly higher for the less conductive material than
for the homogeneous material, whilst the errors for the more conductive material are lower
than for the homogeneous case.

At t = 337, the slab is almost at a uniform temperature ofT = 0.5. The temperature of the
leftmost particle isT = 0.49828 and that of the rightmost particleT = 0.50489. The average
of these differs from the correct average by 0.32%. This is also a measure of the overall
conservation of heat. The result, although very good, is less accurate than that obtained for
the homogeneous slab.

Figure 4b shows the temperature profile whenkl = 100 andt = 0.2. At the very earliest
times the SPH temperature profile for the material on the left has a small but noticeable
separation from the exact solution. This difference decays quickly. Byt = 0.1 the separation
has become very small and the two solutions are very similar. The SPH and exact solutions
are indistinguishable aftert = 0.3. TheL2 error has a maximum of 0.35% att = 0.05 s and
less than 0.1% att > 0.3 s.

5.4. Discontinuous k, ρ, and c

The setup for this test problem is again similar to the previous cases. The two materials
on either side of the slab now both have the same thermal diffusivity, but different values
of k, ρ, andc. We choosekl = cl = 1 andαl =αr = 0.001 and test the effect of conduction
between materials with different conductivities and heat capacities.
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FIG. 5. The temperature across the slab for (a)kr = cr = 3 att = 5 and (b)kr = 3 andρl = 2000 att = 2. The
exact solution is given by the curve and the SPH temperatures by the dots.

The exact solution for an infinite slab with a temperature discontinuity atx= xm for this
more general case is

T − Tl

Tc
=
{

Erfc((x − xm)/αl t) if x < xm

1+ (kl/kr )
√
αr /αl Erf((x − xm)/αr t) if x > xm

, (36)

whereTc= (Tr − Tl )(kr /
√
αr )/(kr /

√
αr + kl/

√
αl ), xm is the location of the the disconti-

nuity.
Comparing the SPH and the exact solution whenkr = cr = 3, we find at the very early

stages that there is only a small difference in the region of the initial temperature discon-
tinuity. By t = 0.2 the two solutions are very close together and byt = 1 they are almost
indistinguishable. Figure 5a shows the temperature profile for this case att = 5. The SPH
solution fully captures both the shape of the temperature profile and its evolution.

The errors in the temperature for the material on the left are around three times greater
than those for the material on the right. This is in line with the ratios of the conductivities and
specific heats. As usual they peak at the beginning of the simulation when the temperature
gradient at the interface is greatest. Byt = 1 the errors are less than 1%. Again, the initial
errors decay quickly, leaving the solution highly accurate.

At t = 500 the temperature of the rightmost particles isT = 0.7510 and that of the left-
most particlesT = 0.7474. The average of these isT = 0.7492. This is very close to the
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theoretical equilibrium temperature ofT = 0.75 that arises from the higher heat capacity of
the material on the right. The conservation of heat is accurate to 0.016%.

Figure 5b shows the SPH and exact solutions fork1= cl = 1 andρl = 2000 for the left
material, andkr = 3,cl = 1 andρl = 1000 for the right material. As before, the SPH solution
is highly accurate.

Ratios of thermal diffusivity up to 1000:1 were tested and demonstrate similar accuracy.
Of particular interest is the case with air(k1= 0.0254,cl = 1.012, andρl = 1.226—the left
material) and water (at 300 K)(kr = 0.620, cr = 4.179, andρr = 1000—the right mate-
rial). The SPH solution and the exact solution are shown in Fig. 6 for three times in the
early and middle stages of the evolution. The SPH solution is remarkably accurate, even

FIG. 6. Temperature profiles for conduction between air on the left and water on the right at times (a)t = 0.01,
(b) t = 0.1, and (c)t = 0.5.



SPH CONDUCTION MODELLING 243

at t = 0.01, despite the very large differences in the material properties, particularly the
density.

6. CONDUCTION IN A SLAB WITH ISOTHERMAL ENDS

6.1. Homogeneous

In the previous examples the edges of the materials have been either adiabatic or periodic.
Here we explore the use of isothermal boundary conditions. The configuration consists of
a homogeneous slab of unit width in thex-direction and periodic in they-direction. The
left edge is maintained at temperatureTl = 0 and the right edge is maintained atTr = 1. The
material on the left of the centerlinex< xm is initially at Tl and the material on the right
is initially at Tr . The material properties arekl = cl = kr = cr = 1 andρl = ρr = 1000. Both
sides have the same thermal diffusivityαl =αr = 0.001.

Figure 7 shows the asymptotic temperature profile. It is almost exactly linear. The ex-
act linear asymptotic profile is shown as the solid line. TheL2 and L∞ error norms are
0.03 and 0.15%, respectively, fornx = 40. This demonstrates that the isothermal boundary
formulation described earlier gives accurate results even for modest spatial resolution.

Examining the behaviour of the errors with the spatial resolution (shown in Fig. 8), we
find that the introduction of the isothermal boundary particles reduces the SPH conduction
solution to first order. This can be understood by examining the Taylor series expansions
of Eq. (28). The first order terms normally vanish because of symmetry arguments about
the balancing odd order contributions of particles to either side. If there is an isothermal
boundary then there are no particles on one side and the cancellation ceases, leaving first
order error terms. Using the isothermal boundaries in conjunction with the boundary density
corrections given in Eq. (33), however, improves the spatial errors to order 3/2. This occurs
because of improvements to the normalisation of the kernels near the boundaries produced
by the increased density of these boundary particles.

6.2. Inhomogeneous k

For this case the material properties are the same as before except nowkl = 10. Initially
the temperature is described by the error function solution in Eq. (34) and the temperature
of the interface is 1/(1+√10)≈ 0.24025. As the isothermal boundaries begin to add and

FIG. 7. The asymptotic temperature profile (att = 135) is very close to the linear exact solution when hot
and cold isothermal boundary conditions are applied to the sides of the slab.
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FIG. 8. L1 andL2 errors att = 135 s for steady conduction in a homogeneous block with isothermal ends
(in x) for different resolutionsnx from 20 to 120. The solid lines are the errors when no boundary density
corrections are used, whilst the dashed lines show the improvement in the order of accuracy when the boundary
density corrections are used.

remove heat, the temperature profiles straighten and the temperature of the interface tends
asymptotically towards

Ti = kr

kl
(Tr − Tl ) = 1

10
. (37)

The asymptotic temperature profile (att = 135) shown in Fig. 9 is piecewise linear and
matches the exact solution closely. The temperature at the interface is correctly predicted.
The maximum difference between the SPH and the piecewise linear exact solution att = 135
is 0.29% for the less conductive material and 0.59% for the more conductive material. The
L1 error is 0.24%. The error is, as usual, larger for the more conductive material, but is still
small even for modest resolutions.

This demonstrates that isothermal boundary conditions can be easily implemented in
SPH by simply not changing the temperature or internal energy of the isothermal particles
boundary particles and that the solutions have satisfactory accuracy.

FIG. 9. The steady temperature profile for a slab with isothermal sides (atTl = 0 andTr = 1) and a material
discontinuity atx= xm. The material on the left hask= 10 and the one on the right hask= 1.
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6.3. Temperature-Dependent Conductivity

Next we examine the accuracy of solutions when the conductivity varies with the temper-
ature. This is common when there are large temperature ranges and particularly in industrial
applications.

As before, we use a semi-infinite slab of unit width with isothermal sides (one heated
Tr = 1 and one cooledTl = 0). The initial temperature isT = 0 in the left half andT = 1 in
the right half. The conductivity varies as

k(T) = eκT , (38)

whereκ is a constant.
Since analytic transient solutions are not available for this problem, we useFastflo (a

finite element package [9]) to generate an alternative numerical solution with which to
compare. TheFastflosolution uses fully implicit timestepping and is spatially second order
accurate with 40 quadratic elements across the width of the slab. The 80 nodes across the
width of the slab gives the same spatial resolution as the 80 SPH particles used.

Figure 10 shows a sequence of snapshots of the temperature profile for both the SPH (dots)
and FEM (line) methods forκ = 4. This represents a factor of 54 variation in conductivity
across the width of the slab. There are small differences between the solutions at each
time, but overall they track each other (both spatially and temporally) very closely. The
FEM solution is slightly more diffusive than the SPH solution. Figure 10c shows the two
solutions near the asymptotic limits. The FEM approaches the limit a bit more slowly than
the SPH solution. The timesteps used here are1t = 0.00412 forFastfloand1t = 0.000412
for SPH (given by the limit in Eq. (34)). TheL1 norm of the difference between the SPH and
Fastflosolutions is 0.11% and theL∞ difference is about 1%. The relative error contributions
of the FEM and the SPH are unquantifiable. Importantly, the two solutions are very close in
both time and space. This level of accuracy at modest resolution is important for practical
applications involving fluid flow.

The exact solution for the the steady-state temperature profile, whenk= eκT , is given by

T = 1

κ
ln

(
(eκ − 1)

(1− 2δ)
(x − δ)+ 1

)
, (39)

whereδ= 1
21x is the position of the first SPH particle (where the boundary condition

T = 0 is applied) andx= 1−δ is the position of the last particle (where theT = 1 boundary
condition is applied).

Figure 11 compares the asymptotic temperature profiles for the SPH solutions with the
analytic steady-state solutions, for a range ofκ. In each case the SPH solution is very close
to the FEM solution, even when the temperature gradient adjacent to the cold isothermal
boundary becomes very steep. This demonstrates that the use of the harmonic average
conductivity in the SPH heat equation (28) to ensure flux conservation when there are rapid
changes in conductivity gives suitably accurate solutions.

The heat flux through either isothermal boundary, once the heat flow has reached equi-
librium, is

8 = 1

κ
(eκ − 1). (40)

Figure 12 shows the heat fluxes through both the left and the right boundaries. The solid
curves are the SPH heat fluxes calculated using method B and the dashed lines show the
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FIG. 10. The temperature profiles produced by a temperature-dependent conductivity withκ = 4 at (a)t = 0.6,
(b) t = 5.0, and (c)t = 10. The SPH temperatures are given by the points and theFastflotemperature is given by
the curve.

fluxes using Method A (see Section 3). The horizontal dot–dash line is the exact asymptotic
limit for the fluxes (from Eq. (40) withκ = 4). The dotted curves are the fluxes calculated
usingFastflo(which we expect to be highly accurate because of the use of 80 finite elements
across the block). For each of the SPH andFastflosolutions there are two curves. The upper
ones show the hot wall heat fluxes. They rise rapidly and overshoot the asymptotic limit
and then drop back asymptotically towards the limit (38). The lower curves show the cold
wall heat fluxes. They remain zero until aroundt = 9. This reflects the time taken for the
front of the heated region to propagate through the comparatively less conductive material.
Once the front reaches the cold boundary the flux rises rapidly, as the conductivity of the
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FIG. 11. Asymptotic temperature profiles with an exponentially temperature-dependent conductivity for
(a)κ = 1, (b)κ = 2, and (c)κ = 4. The exact solution is shown as the curve and the SPH solution as the points.

FIG. 12. Heat fluxes through the edges of the slab when the conductivity is an exponential function of
temperature andκ = 4. The corrected densities are only calculated att = 0 and periodic boundaries are used in
the vertical direction.



248 CLEARY AND MONAGHAN

material rises exponentially. The flux then also asymptotes to the limit value as the system
approaches thermal equilibrium. An important aspect of this flow is the strong asymmetry
of the heat fluxes due to the net heating of the material as the conductivity increases. This
indicates that the original amount of heat stored in the slab is much less than the amount
stored at equilibrium.

All the heat fluxes for the hot wall (upper curves) are close at all times, with method B
being particularly close to that of the accurateFastflosolution. The flux using method B for
cold wall (lower curves) is also very close to theFastfloflux. There is only a modest differ-
ence as they approach the asymptotic steady limit. TheFastfloasymptotic limit differs from
the exact value by only 0.03%. The SPH solution by method B (with only 40 particles across
the slab) is in error by 1.6%. This is quite acceptable for this resolution. This configuration
is a very strong test of the heat conduction because around 10% of the entire temperature
difference occurs between the boundary particle and the first interior particle. Method A
gives a good representation of the evolution and the final value of the hot wall flux (where
the temperature variation is small) but is very poor for the cold wall (where the temperature
variation is large). This occurs because this flux uses an explicit estimate of the temperature
gradient (given in Eq. (29)) and this gradient uses only the conductivitykb, not a harmonic
mean ofka andkb. This demonstrates that method B is a much more robust technique for
calculating the heat fluxes. It is also simpler to implement and computationally faster.

If the boundary densities are corrected at each timestep to take account of the time varia-
tions of the conductivity near the cold wall, then the cold wall flux diverges further from the
Fastfloflux and the error in the asymptotic limit increases to 4.0%. This is not surprising,
since Eq. (33), used to calculate the corrected densities, assumed that the variations in con-
ductivity adjacent to the isothermal boundary were small. For cases where the conductivity
change is large, using the initial corrected densities without the conductivity variation seems
to yield the best result. The corrected densities are then given by

ρa = −ma

1x

∑
b

2mb

ρb
rab · naFab. (41)

Even when the conductivity variation is exponential (with power 4) and the resolution is
modest, method B gives good results for the fluxes, their evolution, and their asymptotic
values. This gives us confidence that the modest conductivity variations found in industrial
applications will not cause problems or any significant errors.

6.4. Sinusoidal Temperature Variation in x

This configuration consists of the usual block of homogeneous material with isother-
mal sides and adiabatic top and bottom boundaries. The material properties used were
k= 1, cv = 1, andρ= 10. The density corrections were used along the isothermal bound-
aries. The unit normals on the left and right boundaries are chosen to benl = (1, 0) and
nr = (−1, 0), respectively. These apply even at the corners where there is a discontinuity
in the thermal boundary condition. If the normals at the corners are chosen to be directed
inwards at 45◦ then there is more variation in the calculated fluxes. The initial temperature
distribution is chosen as

T(x, y, t = 0) = sin
πx′

l
, (42)
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FIG. 13. Sinusoidal temperature profiles across a slab of unit width. The points indicate the SPH temperatures,
whilst the curve shows the corresponding exact solution at each time (a)t = 0.02, (b)t = 0.5, and (c)t = 1.5.

wherel = 1− 2δ is the side length of the block,x′ = x−δ, andδ= 1
21x. The exact solution

for heat conduction with this geometry and set of initial conditions is

T(x, y, t) = sin
πx′

l
e−(π/ l )2αt . (43)

A 40× 40 array of SPH particles was used. Figure 13 shows the temperature field at
three different times. There is clearly close correspondence between the exact and SPH
solutions. The SPH solution predicts both the form of the profile and its evolution.

Figure 14 shows the exact and SPH values of the average fluxes absorbed by the isothermal
sides as functions of time, (a) with and (b) without the density correction. The solid line
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FIG. 14. Evolution of the SPH and exact average fluxes through the isothermal boundaries of a slab with a
sinusoidal temperature profile, using the (a) corrected boundary densities and (b) uncorrected densities.

corresponds to method B and the dashed line corresponds to method A. The exact value of
the flux is shown as the dot–dash line and is given by

8(y, t) = kn · ∇T = ke−(π/ l )2αt. (44)

The fluxes (with corrections) shown in Fig. 14a match the exact solution very closely
with Method B being more accurate. When the corrected densities are not used (Fig. 14b)
the accuracy of the fluxes deteriorates, with the deterioration being larger for method A.
In this case the error changes from a slight underestimation to an overestimation and its
magnitude doubles. The most accurate method is method B using the density correction.

The errors (measured relative to the maximum flux at that time) are largest at the corners.
The error in the corners quickly rises to around 8%, then slowly decreases to 4.5% at
t = 2. By comparison the error in the flux across the large uniform central region begins at
0.6% and slowly declines. Att = 0.52 it becomes slightly larger than the exact flux. This
difference slowly increases to around 2% byt = 2.

The important conclusion here is that the majority of the error in the flux is contributed
near the corners at which the adiabatic and isothermal boundaries intersect. The end effects
extend about four particle spacings from the corners. Since the interpolation is a multiple of
the particle spacing, increasing resolution will not affect the number of boundary particles
with these corner errors, but will decrease their relative contribution to the overall error. For
this case the resulting average flux remains accurate to around 1% throughout the simulation.



SPH CONDUCTION MODELLING 251

6.5. Sinusoidal Temperature Variation in x and y

In this case the temperature is a function ofx andy, and all the boundaries of the square
block are isothermal. The principal complication arises from the existence of corners. The
block consists of annx× nx array of particles placed on a grid with the first row and column
at y= δ=1x/2 andx= δ, respectively. The initial temperature distribution is given by

T(x, y, t = 0) = sin
πx′

l
sin
πy′

l
, (45)

wherel = 1−2δ is the side length of the block, andx′ = x−δ andy′ = y−δ. The temperature
along all four isothermal edges isT = 0.

The exact solution for conduction in this geometry with this set of initial conditions is

T(x, y, t) = sin
πx′

l
sin
πy′

l
e−2(π/ l )2αt . (46)

The material properties used here arek= 1, cv = 1.5, andρ= 10 and the resolution is
nx = 40. Figure 15 shows a sequence of temperature distributions. The temperature is shown
as a function ofx. Since there is a line of particles for each of thenx values ofy and the
temperature distribution is symmetric (with respect to reflection in thex- andy-directions
through the middle of the block) there arenx/2+ 1 distinct curves in each frame. These
correspond to temperatures along different horizontal slices of the block (parallel to the
x-axis). The SPH temperatures are shown as points and the exact solution for each value of
y is shown as a curve. The SPH solutions are clearly very close to the exact ones. The spatial
distributions of temperature in both thex- and y-directions are highly accurate (average
relative error¿1%). Their temporal evolution is also extremely accurate.

The symmetry of the problem means that the heat flux through each side is identical. The
flux through the boundaryx= δ or x= 1− δ is

8(y, t) = kn · ∇T = πk

l
sin
πy′

l
e−2(π/ l )2αt , (47)

Figure 16 shows the evolution of the boundary flux profiles. The SPH fluxes (using
method B) are shown as points and the exact fluxes (Eq. (47)) are given by the curve. The
fluxes along the top and bottom boundaries of the slab(y= δ and 1− δ) are shown by the
solid curves and matching points. The vertical points atx= δ andx= 1− δ correspond to
the SPH fluxes for the sides of the block. Figure 16 shows the behaviour of the boundary
fluxes throughout the evolution. The SPH fluxes are very close to the corresponding exact
flux curve at each time. The largest discrepancy occurs at the end points (1.57%). The SPH
solution clearly predicts spatial distribution of the fluxes with high accuracy. The evolution
of the spatial distribution is also accurate.

Integrating the flux along the boundary gives an average heat transfer rate (a dimensional
version of the Nusselt number). For this case the average flux is

8av = 2k

l f
e−2(π/ l )2αt . (48)

Herel f is the length of the boundary used in the SPH flux calculations. This is not the same
as the lengthl used in the temperature calculations. Each SPH particle represents a small
square block of material with side length1x. The distance between the end particles (the
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FIG. 15. The temperature profiles for eachy-coordinate of the SPH particle lattice showing the various cross
sections of the two-dimensional sinusoidal temperature distribution. The points show the SPH temperature of
each particle, whilst the curves show the corresponding exact solution at times (a)t = 0.02, (b) t = 0.51, and
(c) t = 1.01.

centers of these blocks) is(nx − 1)1x, whereas the length of the real edge (over which
the fluxes are calculated) isnx1x, so l f = l + 1x. An extra 0.51x is contributed by the
parts of each of the end blocks which protrude beyond the centers of the end particles. The
evolution of the SPH and exact average fluxes are shown in Fig. 17. The SPH fluxes are
calculated by both methods A and B for all four edges. The SPH and exact fluxes are all
indistinguishable.

A series of tests were run to determine the dependence of the errors onh,1x, and the
material properties. With 1≤ h/1x≤ 1.8 the errors in the maximum flux increase from



SPH CONDUCTION MODELLING 253

FIG. 16. The heat fluxes through the horizontal isothermal boundaries are shown. The curve is the exact heat
flux and the points are the SPH fluxes; (a)t = 0.0, (b) t = 0.5, and (c)t = 1.0.

FIG. 17. Evolution of the SPH and exact average fluxes through the isothermal boundaries.
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1 to 2.3% ash/1x increases. This means thath=1x is optimal for heat conduction.
Decreasing1x results in lower flux errors as expected. If1x is reduced by a factor 4, the
maximum error is reduced by a factor 10. Further reduction in1x does not give significant
improvement in the maximum error for this problem ifh/1x is constant. Our analysis
(partly described in Section 2.2) suggests thath must decrease more slowly than1x to get
the correct limit as1x→ 0. We have not explored this limit here. The errors in the SPH
fluxes were found to be completely insensitive to changes ink, p, andcv by factors of 100,
6, and 1000, respectively.

7. HOW TO SET UP BOUNDARIES

In previous tests, the edges of the particle lattice were aligned with the edge of the slab.
In general this is not the case. So how should we construct the boundaries in such cases?
Consider heat conduction in a disc. The naive setup is to take all the particles on a lattice
that lie within the bounding circle and to tag the outermost ones as isothermal boundary
particles. Such an approach actually produces very poor results. An unphysical temperature
discontinuity forms just inside the isothermal particles as the boundary behaves partially
isothermally and partially adiabatically. The problem is caused by the uneven spacing of the
boundary particles. Nearby interior particles can effectively “see” through the gaps between
the isothermal boundary particles and behave partially adiabatically. The local boundary
behaviour then depends on the precise details of the particle locations. This is exaggerated
by the somewhat erratic directions of the boundary normals.

We have devised simple rules for setting up isothermal boundaries. These rules are
consistent with the requirements to set up physical boundaries for fluid flow:

• Boundaries should be set up separately from the interior particles unless they align
with the particle lattice.
• Boundary particles should be placed upon smoothly varying curves and should be

equally spaced using the interior particle spacing1x.
• The boundary normals should actually be perpendicular to the underlying boundary

curve leading to smooth variations in the orientations of the normals.
• Interior particles within∼ 1

31x of the boundary should be omitted.

7.1. Conduction in a Disc

To demonstrate the importance of setting up the boundary correctly and to show the accu-
racy that can be obtained using the rules described above we model radial heat conduction
in a disc with initial temperature distribution given by the Bessel function

T(r, θ, t = 0) = J0(β1r/a), (49)

whereβ1= 2.4048 is the first root of the Bessel functionJ0(r ). The temperature along the
isothermal boundary of the disc isT = 0.

The exact solution for heat conduction with this geometry and initial conditions (from
[8]) is

T(r, θ, t) = J0(β1r/a) e−α(β/a)
2t . (50)

These simulations usek= 1.0, cv = 1.0, andρ= 1000 andnx = 30.
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FIG. 18. Particle positions for heat conduction in a disc. The black particles are the isothermal boundary
particles.

7.1.1. The naive setup.The most obvious choice of configuration for modelling heat
conduction in a disc of radiusa with an isothermal outer boundary involves setting up the
particles on a grid and choosing the outermost particles to be the boundary. Figure 18 shows
the initial setup. The normals are chosen to be radial. The isothermal particles are chosen
to be all those withinδs= 0.81x of the outer radius of the disca, where1x is the particle
spacing. The effective radius of the disc is chosen to be the radial distance of the closest
isothermal particle to the center of the disc; increasingδs increases the thickness of the
isothermal region and decreases the effective radius of the disc.

Figure 19 shows the temperature profiles for this problem. The SPH particles appear
as points and the exact solution (Eq. (50)) is given by the solid line. These results are

FIG. 19. Radial temperature profile for naive setup att = 30.7. Note the discontinuity in the temperature
between the boundary and isothermal particles.
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FIG. 20. Particle positions for heat conduction in a disc. The black particles are the isothermal boundary
particles and are placed on a circle of radiusa = 0.5.

very poor. A discontinuity quickly arises in the temperature at the edge of the isothermal
boundary. The temperature is uniformly overpredicted. This indicates that the heat transfer
to the boundary is too small. The initial height of the discontinuity is about 7% of the peak
temperature. Att = 128 the average error is 14.6% and the maximum error is 28%. The
discontinuity indicates that large sections of the boundary are acting as an insulator rather
than as a conductor or heat bath/sink. This result may at first be surprising, but can be
understood when it is recognised that the average spacing of the particles is around 1.21x.
The additional 20% spacing between the isothermal particles means that the outermost
internal particles are partially exposed and act as adiabatic boundary particles even though
they appear to be inside the disk. This is a result of the SPH method smoothing the effects
of particles over distances of 2h. This demonstrates that this method of construction of
isothermal boundaries is inappropriate.

7.1.2. A better setup.An alternative way of setting up the particles is shown in Fig. 20.
Here the boundary is constructed as a circle of equally spaced particles with separation
very close to that of the interior particle separation1x. The interior particles are placed
on a grid. Particles withina− ε1x, where 0<ε <1, of the disc center are included. This
configuration has the significant advantages that the boundary is smooth, the normals are
really normal to the surface at each point, and the boundary particle spacing is correct. It has
the disadvantage that there are some interior points very close to the boundary particles. One
question to be answered for this configuration is, How close should the interior particles be
to the boundary (that is, what value ofε is best) in order to ensure adequate thermal contact
between the interior and the boundary? Here we chooseε= 0.4.

Figure 21 shows the temperature profiles for this configuration at the same time as for
the naive setup shown in Fig. 19. The SPH temperatures are now extremely close to the
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FIG. 21. Radial temperature profile for conduction in a disc with a circular isothermal boundary setup ac-
cording to our rules att = 30.7.

exponentially declining Bessel function exact solution. The SPH solution has a high degree
of radial symmetry and shows little variation from the exact values near the outer boundary.
This indicates that forε= 0.4 the thermal contact between the boundary and the interior is
satisfactory and that the uneven spacing of the interior particle with respect to the boundary
particles does not affect the accuracy of the solution. This is very encouraging for cases
where the interior particles are disordered (as in a liquid). TheL∞ errors in the temperature
(relative to the maximum temperature at that time) begin at 1% and increase to 1.5% at
t = 128, while theL1 errors begin at 0.2% and rise to 0.46%. This is a satisfactory level of
error for this small resolution(nx = 30). Fornx > 30 the error does not decrease rapidly. We
are uncertain of the reason for this but the irregular particle separation from the boundary
is likely to be a significant contributor.

The exact flux through the circular isothermal boundary is

8(t) = kβ1J1(β1) e−α(β1/a)2t , (51)

whereJ1(r ) is a Bessel function of first order. The heat fluxes are very accurately calculated
by both methods when the isothermal boundary is set up in the manner described above.
The maximum error for method A is 1.3% and that for method B is 1.7%. For higher
resolutionnx = 50 the maximum error in the flux calculated by method B reduces to 0.23%,
while the method A error increases to 3.9%. This again demonstrates the higher accuracy of
method B. Note that the boundary density corrections formulated earlier have been used in
this simulation without alteration. If they are omitted, the temperature profile and the flux
(calculated with method B) remain largely unchanged.

For very small values ofε the temperatures are overpredicted very close to the boundary.
This causes a small increase in the error. For values ofε larger than 0.42 there is an abrupt
decrease in accuracy. This is caused by a sharp drop in the corrected densities from the
previous range to 0.61 to 1.1 times the base density. The average boundary density is 25%
lower. This means that the thermal connection between the interior and the boundary is much
weaker and the heat flux absorbed by the boundary is smaller. This causes the temperature
to be overpredicted, especially closer to the center. The flux calculated by method B for
ε= 0.8 is initially 7% too high, but improves quickly to be only 1–2% in error. For method
A, however, the error is 29%. This is a consistent error and unacceptable error throughout
the evolution. This behaviour is characteristic of all the cases forε >0.42.
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Simulations for other values ofh, for exampleh= 1.11x and 1.31x, are less sensitive
to ε. For the 1.1 case, there is a mild decrease in accuracy to around 1.3 from 0.8% when
increasingε beyond 0.42. For the 1.3 case values ofε as high as 0.8 give quite good results.
Sinceh= 1.21x is our preferred choice of interpolation length (for reasons described
earlier) some care should be taken with choosingε. Values in the range 0.2–0.4 seem to be
optimal. The results are insensitive to the choice within this range.

Summarising, the temperature profiles, the fluxes, and their evolutions are all accurate
to about 1% when 30 or more particles are used across the disk, the boundary is set up
according to our rules, and the corrected boundary densities are used. Both methods of flux
calculation then give very good results.

7.2. Conduction Not Aligned with the Particle Lattice

In all the previous slab examples the direction of conduction was aligned with the particle
lattice. It is important that there be no deterioration in accuracy when the conduction is across
the lattice. We choose the worst case example by rotating a slab by 45◦ while retaining the
particles on thex–y grid. The boundary particles are set up according to the rules devised
above and are not part of the interior lattice. This ensures that there are no gaps through
which they can “see” outside the block.

The initial temperature field is the same as used earlier (Section 6.4) but rotated by 45◦.
The material properties arek= 1,cv = 1, andρ= 1000. The particle configuration is shown
in Fig. 22. The particle spacing in the interior is the same as in the previous calculation
(nx = 40)when the particle lattice was aligned with the conduction direction. The boundary
particles are spaced according to the rules discussed previously.

Figure 23 shows the temperature field using this configuration. The SPH and exact so-
lutions are very close. TheL1 errors in the temperature using the packed boundary begin
at 0.12% and rise to 1.4% att = 90. TheL∞ errors (in the middle of the block) begin
at 0.43% and rise to 3.6% att = 90. These errors are calculated relative to the maximum
temperature at each time so as usual, a constant absolute error rises as proportion of the
declining maximum temperature. These errors are very similar to the results for the non
inclined slab.

The alternative “naive” way of setting up the boundary by taking the particles on the
original lattice that are within the inclined slab shape produces a sparse boundary. The
errors in the temperature then increase substantially with theL1 error rising to 5.5% and
theL∞ errors to 8.7% (both att = 90). The sparse boundary has effectively four times the
errors of the dense boundary (set up according to our rules). This again demonstrates the
importance of constructing isothermal boundaries according to our rules.

Figure 24 shows the fluxes (with the usual meaning for the different lines) for the dense and
sparse packing of the isothermal boundaries. The flux predictions for the dense boundary
(see Fig. 24a) are very close to the exact flux. The fluxes calculated by method B are
particularly good with accuracy around 1–2%. This is very acceptable for a resolution of
only 29× 29. Conversely, the flux predictions for the sparse boundary configuration are
extremely poor. The errors of up to 25% for this case again highlight the importance of
appropriate setup for the boundary particles and their normals.

Conduction in an annulus was also tested. As a general rule, conduction around the inner
hole for which the hole is larger than 10 particle diameters and through solids that are at least
10 particles thick is well resolved and accurate to better than 1% for both the temperature
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FIG. 22. Particles used to model conduction in an inclined slab with the packed boundary set up according
to the rules devised in the text.

profiles and the isothermal boundary fluxes. If the hole is smaller than 10 particles in width,
then a higher resolution will be needed in order to ensure the accuracy of the calculation. A
minimum number of 10 particles continually recurs throughout this work on conduction. A
minimum of 10 particles are needed to resolve conduction properly, regardless of the nature
of the complications to the heat flow.

FIG. 23. The temperature across the inclined slab (along the 45◦ centerline) att = 50. The points indicate the
SPH temperatures, whilst the curve shows the corresponding exact solution.
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FIG. 24. Evolution of the SPH and exact average fluxes through the isothermal boundaries of the inclined
slab, (a) using the packed packed boundary resulting from the rules described in the text and (b) using the sparse
boundary produced by selecting boundary from the lattice.

8. CONDUCTION FOR DISORDERED PARTICLES

The accuracy of the solutions of the heat equation was examined for the case where the
particles are disordered. This is a particularly important case, since the particle positions
usually become disordered whenever a fluid is being modelled.

It is not appropriate to choose random positions for the particles, since these are not
indicative of the positions that the particles will occupy during fluid flow simulations.
We set up the particle locations in the following way. An initialnx × ny lattice of parti-
cles is chosen. The outermost particles are fixed to form a box. The inner particles are
allowed to move as a fluid. The SPH equations governing this motion can be found in
[11, 12]. The fluid (with viscosity parameterα= 0.01) rearranges itself into a standard
disordered SPH particle structure. Gravity is turned off so that the pressure throughout
the slightly compressible fluid equalises and the fluid maintains equal contact with the top
boundary as it has with the bottom boundary. For this part the fluid is made very viscous
α= 0.1 so that the pressure and density fluctuations begin to damp out. A third step with
α= 1 damps out all remaining disturbances. The fluid particles are then fixed in space
and the required initial temperature distribution and thermal boundary conditions are ap-
plied. This produces the initial state for the simulations. A typical example is shown in
Fig. 25.

We model conduction in a homogeneous square block with a sinusoidal temperature
profile. This test problem is then the same as the one in Section 6.4 except that the interior
particles are now disordered. The density corrections are again used along the isothermal
boundaries.
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FIG. 25. The particle positions for conduction is a slab modelled with disordered particles.

Figure 26 shows the temperature field at three different times. There is a close correspon-
dence between the exact (curve) and SPH (point) solutions. The SPH simulation tracks the
exact solution closely giving the correct spatial distribution and the correct temporal evo-
lution of the temperature distribution. Comparing these to Figs. 13 and 23 we find that the
disordered and ordered particles produce similarly accurate solutions. The spatial disorder
of the particles introduces only a small amount of variation in the temperature profile. This
appears as a slight spread of the SPH points around the exact solution. The magnitude of
this variation is very small and does not increase (in absolute terms) with time. Importantly
the SPH points are distributed evenly above and below the exact solution so that there is
no consistent error in the mean underlying solution. The average error in the temperature
begins at 0.13% and rises slowly to 0.91% att = 1.5. The variation of the SPH points around
the exact solution initially lies in the range 0.9 to 2.3%.

Figure 27 shows very close agreement between the exact (dashed line) and SPH (solid
line) values of the average fluxes through the isothermal boundaries as a function of time.
The initial and the peak errors are actually smaller for the disordered particles. The final
errors are comparable. The average fluxes through the hot and cold walls have slightly
different values initially (about 0.7%). This difference quickly vanishes as the temperature
field adjusts to the disordered particle structure and the heat entering one side then fully
balances the heat leaving the other. Overall, the average heat transfer rates are remarkably
accurate for disordered particles in this configuration.

Similar tests using two-dimensional temperature distributions reveal similar accuracy
when using disordered particles. This gives us substantial confidence in the ability of the



262 CLEARY AND MONAGHAN

FIG. 26. The temperature profiles across the slab of disordered particles. The points indicate the SPH tem-
peratures, whilst the curve shows the corresponding exact solution at each time (a)t = 0.05, (b) t = 0.5, and
(c) t = 1.5.

FIG. 27. Evolution of the SPH and exact average fluxes through the isothermal boundaries for the disordered
particles.
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this SPH formulation to correctly model conduction within fluids and between fluids and
solids.

9. CONCLUSIONS

A form of the SPH energy equation has been developed that ensures continuity of heat
flux across discontinuities in density, specific heat, and conductivity and when there are
significant continuous spatial variations in material properties. A set of rules have been
formulated for the construction of isothermal boundaries that lead to accurate solutions.
Simulations of heat conduction in homogeneous slabs and discs and multi-material slabs
were performed for a wide range of initial conditions. The predicted transient temperature
distributions and heat fluxes through isothermal boundaries compare well with available
exact solutions. In particular, the solution for an infinite material with a steep temperature
discontinuity was found to be second order accurate. The inclusion of isothermal boundary
conditions reduces the scheme to first order. Density corrections for the boundary particles
were developed which improve the order of accuracy to 1.5 and also improve the accuracy
of flux predictions. The level of accuracy at modest resolution is better than 1% for a wide
range of problems with increasing complexity.

Specifically, we have found:

• The SPH methodology is very robust for modelling thermal conduction, since errors
do not propagate or grow, but rather decay.
• The edges of solid materials are naturally adiabatic in the SPH formulation. Adia-

batic boundaries do not affect the order of accuracy and result in only a marginal decrease
in the actual level of accuracy.
• Total heat content is extremely well conserved in insulated materials.
• More than 10 particles in a region of large temperature variation is a sufficient

number to predict the temperature distribution and its evolution with good accuracy.
• Conduction between materials of vastly different densities, specific heats, and con-

ductivities can be accurately modelled. In particular, the solution for conduction between
air and water is extremely accurate.
• Isothermal boundary conditions can be easily implemented in SPH by simply not

undating the temperature or internal energy of the isothermal particles at each timestep.
• For slabs with isothermal sides, the solutions at early times agree closely with

analytic solutions (when they exist).
• The asymptotic temperature profiles in slabs made from two materials with different

conductivities are correctly predicted, as is the temperature at the interface.
• For materials with highly temperature-dependent conductivities the SPH solution is

also very accurate.
• Isothermal boundary density corrections were obtained that improve the accuracy

of the flux and temperature predictions of the SPH method and also increase the order of
accuracy. For modest resolution the accuracy (compared to exact andFastflosolutions) is
better than 1%.
• Heat conduction calculations were performed using disordered particles in a range

of one- and two-dimensional configurations, involving isothermal and adiabatic boundaries.
The accuracy using these disordered particles varied between applications. In some cases the
solutions (both temperature and heat flux) were more accurate for the disordered particles
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than for the ordered particles. In other cases the reverse was true. In general the amount of
variation was not large. This is a crucial test which benchmarks our formulation for fluid
dynamical calculations.
• The particle spacing in the isothermal boundaries is crucial to ensuring its behaviour

as a homogeneous isothermal boundary. Separations comparable to the interior particle grid
spacing give excellent results.
• With a good implementation of the isothermal boundaries, the heat conduction is

equally accurate whether parallel to the lines of particles or inclined to them, that is, the
conduction simulations are not prejudiced by the directions of the particle grid.
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